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Developmental processes disrupted in neurodevelopmental

disorders occur rapidly and with temporal precision. During

development, individual gene activity can dynamically engage

different signaling networks; thus genetic mutations can lead to

different functional changes at different times. Interpretation of

phenotypes can be further complicated if initial functional

changes trigger compensatory mechanisms. Examining

genetic mouse models of neurodevelopmental disorders

reveals cellular phenotypes that change over the course of

development and exist long before behavioral deficits are

assessed. Correspondingly, earlier genetic interventions in

these disorder models have often been more effective at

improving behavioral deficits than late interventions. The

restricted period of effective intervention demonstrates that

identifying a target window is an essential component of

treatment.
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Introduction
Neurodevelopmental disorders such as autism arise from

the disruption of developmental processes, which are

under precise temporal control. To develop treatments

for neurodevelopmental disorders, it is critical to consider

the circuit-specificity and timing of these developmental

processes. For example, neuronal proliferation and migra-

tion, axon guidance, synaptogenesis, and activity-depen-

dent refinement each occur at distinct times in different

circuits during development. Moreover initial functional

changes can be closely followed by homeostatic mecha-

nisms which may confound analysis [1]. Thus expression
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of initial defects may only be obvious during specific

time-periods in different circuits. Recent work with

monogenic mouse models has supported the importance

of timing in neurodevelopmental disorders [2,3].

Although our understanding remains incomplete, new

models enabling temporally and spatially specific manip-

ulations of autism-associated genes, including of Mecp2,

Syngap1, Ube3a, FMRP, and Shank3, have allowed

investigation of disease progression and reversibility.

Careful mapping of the emergence of disease-related

phenotypes in these models has revealed early and some-

times transient phenotypes, such as altered timing of

synaptic maturation. Critically, only early interventions

are able to effect later changes in behavior in many

genetic models, suggesting treatment timing may need

to be closely linked to the timing of deficit emergence and

the underlying affected developmental process.

Neurodevelopmental disorder progression
highlights sensitive windows in development
Examining developmental trajectories in mouse models

of neurodevelopmental disorders shows that functional

changes emerge during distinct periods of development.

Phenotypes can include a shift in developmental timing

or change over time, for instance from synaptic hypoac-

tivity to hyperactivity. This speaks to changing gene

activity and function at different stages as well as involve-

ment of homeostatic or compensatory mechanisms,

highlighting the importance of carefully cataloging def-

icits across development. For instance, several mouse

models of loss-of-function genes found in autism show

changing deficits that appear during the narrow develop-

mental window of active synapse formation and refine-

ment. Expression of Syngap1, a synaptic RasGAP (Syn-

GAP) largely found in dendritic spines, peaks at postnatal

day 14 (P14) in the mouse hippocampus and at this time

point heterozygous loss of Syngap1 results in prematurely

slowed dendritic spine dynamics and increased mEPSC

amplitude [4��]. However, earlier in development at P9

no deficits are observed and later in development at P21

normalization to wildtype has occurred [4��]. A similar

accelerated development following Syngap1 loss is seen

in layer 5 of barrel cortex at the level of spine formation

and pruning [5]. A phenotype that changes across devel-

opment is also present in the striatum following homozy-

gous loss of Shank3, a scaffolding protein of the postsyn-

aptic density. Initial characterization of adult Shank3B
mutants reported decreased cortical–striatal drive [6].

However, during the period when cortico-striatal activity

emerges and stabilizes, at P14, Shank3 loss leads to
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increased cortical–striatal drive [7��]. As the cortico-striatal

circuit continues to mature, cortico-striatal drive in

mutants plateaus so that by P30, control and mutant

animals have similar mEPSC frequency. By P60, wildtype

drive overtakes mutant [7��] congruent with original

observations of decreased mEPSC frequency in adult

Shank3b mutants [6]. Similarly, deletion of FMRP1, a

translational regulator of many synapse-associated

mRNAs, leads to multiple transitory deficits [8] including

a different trajectory of synaptic potentiation between P4

and P10 at the thalamocortical synapse that normalizes by

P14 [9] and short-term synaptic deficits at the cortical

layer 4 to 3 synapse [10]. Although some of these early

changes can seem impermanent, they nonetheless have

important consequences for activity-dependent forma-

tion and refinement of neural circuits [5] and thus can

have long-lasting impact, presenting as later behavioral

phenotypes.

When taking a developmental approach to neurodevelop-

mental disorders, it is also necessary to investigate in a

circuit — specific way. In different neural circuits, the

same mutation can lead to emergence of neurodevelop-

ment deficits at different times. The timing of deficits

may reflect the different timing of developmental events,

such as activity dependent maturation, or temporal regu-

lation of gene expression in individual circuits. For

instance, refinement of thalamic inputs in the barrel

cortex occurs between P0 and P4, while cortical layer

2/3 development occurs between P13 and P16 [11].

Correspondingly, mEPSC synaptic deficits in layer 4 bar-

rel cortex are observed between P4 and P7 in Syngap1
mutant mice [12]. By contrast in layer 2/3 medial pre-

frontal cortex at P14, synaptic deficits are absent despite

being present in adult Syngap1 mutants [13�] while in

layer 2/3 barrel cortex, enlarged spines are already

observed [5]. Depending on the circuit, cortical region,

and layer, phenotypes appear at different times in the

same Syngap1 mutant.

Neurodevelopmental disorders arising from different

genetic mutations follow different developmental pro-

gressions; not all exhibit peak changes during circuit

formation as described above. A different developmental

progression is seen following loss of Mecp2. Mecp2 is an

X-linked gene and is thought to act broadly throughout

the genome regulating transcription of many genes, espe-

cially neuronal ones [14]. Loss of Mecp2 in girls leads to

Rett syndrome, which shares features with autism such as

stereotyped hand movements, and milder Mecp2 muta-

tions have been associated with multiple psychiatric

disorders [15]. At neonatal ages, Mecp2 is expressed at

low levels only reaching maximum expression around

5 weeks of age in mice [16]. Correspondingly, in mouse

models development proceeds relatively normally for

about the first three weeks followed by regression with

difficulties developing in multiple domains including
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motor dysfunction as measured by rotarod test, walking

on a grid and nest building, as well as impaired fear

conditioning, learning and memory and other deficits

by 5 weeks of age [15,17,18]. The progressive behavioral

deterioration seen in this disorder is also seen at the

biochemical level; as the disorder progresses, transcrip-

tional misregulation increases in severity [14]. Human

baby girls show a similar trajectory with relatively normal

early development, including learning to walk, until 6–18

months of age, when both mental and motor regression

begins [15].

Experiments that induce mutations during specific time

windows also support the existence of sensitive but

limited time frames that are particularly affected by gene

loss. The periods sensitive to gene perturbation reflect

the trajectories of gene expression and functional impor-

tance. For instance, removal of Mecp2 after 4 months of

age initiates multiple neurological symptoms with a simi-

lar time course to that of the full knockout, including early

mortality in males [19–21]. By contrast, adult removal of

Syngap1 has little effect at either the synaptic or behav-

ioral level, consistent with its role in early synapse forma-

tion and circuit development [13�]. Using these develop-

mental approaches to establish periods when deficits

emerge and when gene activity is required can help

predict windows of opportunity for effective treatment.

Limited windows for functional rescue
revealed through controlled gene expression
Recent technical advances in genetic manipulations have

led to some of the clearest demonstrations of the temporal

limits for intervening in neurodevelopmental disorders by

achieving temporally controlled reintroduction of genes.

We focus here on genetic rather than pharmacological

strategies due to the difficulties in interpreting the actions

of drugs on a mechanistic level, particularly due to the

notoriously promiscuous nature of drug activity [22].

Furthermore, ongoing development of safer and more

efficient viral vectors means that gene therapy is becom-

ing an increasingly viable therapeutic option [23]. In the

meantime, new mouse genetic strategies have enabled

restoration of endogenous gene function using Cre-

induced removal of floxed stop cassettes [4��,24,25��]
or re-orientation of double-floxed inverted exons [26��].
Achieving endogenous patterns and levels of gene

expression is advantageous, considering many brain-spe-

cific genes show strong dosage effects; many disorders

result from both deletions and duplications, as is the case

with Mecp2 [15]. Approaches capable of restoring endog-

enous levels of isoform-specific gene expression in the

correct cell types will therefore provide the best oppor-

tunity to rescue the phenotypes seen in neurodevelop-

mental disorders with minimal side effects.

Investigations using such novel genetic approaches

are still at an early stage and may yet reveal further
www.sciencedirect.com
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gene-dependent variations; however increasing evidence

suggests that late genetic rescue in adults can affect only a

limited number of behaviors. Encouragingly, earlier inter-

ventions can improve behaviors even where adult inter-

vention brings limited improvements. Thus, a restricted

window of opportunity exists. Furthermore, the ability for

some but not other abnormal behaviors in animal models

to be normalized by adult manipulations suggests circuit

and behavior-dependent limits of plasticity.

One of the earliest studies to undertake a gene re-expres-

sion strategy showed that adult re-expression of Mecp2 in

mice as old as 3 months was able to improve overall

condition as well as multiple motor deficits including gait

and breathing. At a synaptic level, Mecp2 re-expression

also reversed LTP deficits in the hippocampus [24].

However later, more quantitative, phenotypic assessment

following Mecp2 re-expression revealed lingering behav-

ioral and anatomical deficits [27]. In a model of Mecp2

overexpression, which shows similar phenotypes to

Mecp2 loss, adult normalization of gene expression levels

led to similar improvements [28]. The finding that even

adult rescue is possible is consistent with findings from

developmental deletion studies which suggest a require-

ment for Mecp2 in older animals. Supporting the possi-

bility for eventual clinical treatments, systemic viral

delivery of Mecp2 in adults also proved effective for

behavioral improvement [29].

Unfortunately, in other genetic models of autism only

intervention at relatively early time points of postnatal

development has been able to affect adult phenotypes,

including deficits in motor and anxiety-like behavior.

For example, adult (2–4.5 month) reintroduction of

Syngap1 [4��], Shank3 [26��], and Ube3a [25��,30] did

not improve either motor deficits or anxiety-like beha-

viors as measured by rotarod, open field, and elevated

plus maze tasks. Moreover, Syngap1 mutants retained

EPSC defects at cortical layer 2/3 after adult restoration

of expression [13�]. On the other hand, earlier rescue

around P21 in both the Ube3a [25��] and Shank3 [26��]
models was able to rescue rotarod performance. This

timing aligns with the emergence of neurodevelopmen-

tal deficits in Shank3 mutants [7��]. The potential for

anxiety-like behaviors to be targeted at a younger age

remains unclear, as they were rescued following re-

expression at P21 of Shank3 [26��], but not Ube3a

[25��] or Syngap1 [5]. However, ‘anxiety’ was measured

using an elevated plus maze [5,26��] and rearing in open

field [26��] for the Shank3 and Syngap1 models, while

marble burying, nest building, and forced swim beha-

viors were used to evaluate the Ube3a model [25��].
Furthermore, it is important to note that most behaviors,

even when measured using the same assay, involve the

engagement of multiple circuits. Since a disturbance in a

behavior could stem from disruptions of several different

circuits, the differential ability of anxiety-like behaviors
www.sciencedirect.com 
to be rescued in different models could stem from a

difference in the underlying affected neural circuit.

Reintroduction of autism related genes in adult mouse

models has been more successful at correcting cellular

deficits in the striatum and hippocampus, as well as

associated behavioral deficits in motor repetition and

memory, respectively. For example, adult re-introduction

of Shank3 restores spine number and morphology, syn-

aptic properties, and levels of key synaptic proteins,

including glutamate receptors, in the striatum. At a

behavioral level, repetitive grooming and three chamber

social interaction with preference to stranger mouse vs.

object, behaviors associated with striatal function, are also

improved [26��]. Although repetitive behaviors were not

tested in the Syngap1 and Ube3a models, repetitive

behaviors are present in mouse models of autism-associ-

ated transynaptic cell-adhesion molecules neurexin-1

[31] and neuroligin-1 [32]. Both repetitive grooming

and three chamber social interaction deficits are present

in a neuroligin-1b mutant mouse, generated by over-

expression of a mutant neurexin-1 isoform that interferes

with endogenous neurexin-1 signaling in the cortex and

striatum. These deficits are rescued 14 days after halting

mutant neurexin-1b expression either at approximately

3 months or 8 months of age [31]. A different type of

repetitive motor behavior is present in the neuroligin-3

mouse model; knockout mice exhibit accelerated motor

learning with more stereotyped behavior on rotarod per-

formance [32]. As with the other rescues, re-expression of

neuroligin-3 in 4-week old animals rescues this repetitive

behavior. Furthermore, striatal circuitry was directly

implicated in the rescue since neuroligin-3 expression

was targeted specifically to D1-type medium spiny neu-

rons of the nucleus acumbens using a viral approach [32].

Together these results suggest that stereotyped behaviors

associated with deficits in striatal circuitry are more

amenable to rescue at later ages. Similarly, hippocampal

deficits have also been successfully targeted at adult

stages. Adult reexpression of Ube3a and Syngap1 rescues

hippocampal LTP [13�,30], along with contextual freez-

ing in the Ube3a model [30]. Although freezing was not

examined in the Syngap1 model, at the biochemical level,

basal and stimulation-dependent changes in phospho-

ERK were rescued, demonstrating the molecular plastic-

ity of the hippocampal circuit [13�].

Altogether these examples suggest that across genetic

models different circuits show different amenability for

rescue. For many behavioral deficits, adult intervention is

ineffective and earlier intervention is necessary. Some

behaviors remain unchanged even following early post-

natal genetic reactivation, perhaps requiring intervention

in utero. Indeed intervention starting at P1 was able to

rescue all measured Syngap1 behavioral deficits, includ-

ing anxiety that was not rescued at P21 [5]. The devel-

opmental windows where reintroduction of genes leads to
Current Opinion in Neurobiology 2018, 48:59–63
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rescue roughly align with times when postnatal pheno-

types emerge, as described above for deficits in synaptic

maturation following Syngap1 and Shank3 loss. The

differential ability for different behaviors to be rescued

perhaps corresponds to the inherent plasticity of the

underlying circuits.

We have focused here largely on postnatal development,

but there may be other sensitive periods in develop-

ment, such as earlier periods of neuronal proliferation,

migration, and morphogenesis. Neurodevelopmental

disorder associated genes such as CHD8 [33], a chroma-

tin remodeler, have been implicated in disrupting such

earlier processes [34,35]. Furthermore, many implicated

genes are pleotropic and can act at multiple stages in

development. For instance, in additional to synaptic

plasticity, Ube3a is also required in dendrite morpho-

genesis [36], while FMRP1 affects migration of newly

born neurons in the cortex [37]. Indeed, an analysis of

human cortical gene expression across fetal develop-

ment revealed enrichment for gene networks implicated

in autism in cortical layers midway through fetal devel-

opment [38,39] as well as during a later window in

development [38]. Deficits arising from disruption of

such earlier processes would likely require correspond-

ingly earlier treatments.

Conclusion
Moving forward, it will be important to have tools to

determine critical windows both for autism and other

neurodevelopmental disorders. For most disorders, inter-

ventions at the earliest timepoints, when deficits are first

observed, are likely to be the most effective. However,

these disorders are extremely heterogeneous and likely

present with different trajectories and affected circuits in

different individuals. Furthermore, critical windows of

cellular and molecular dysfunction can precede overt

phenotypes, making it difficult to provide therapeutic

interventions at times when they are likely to be most

effective. Thus, developing advanced diagnostic assays

for humans that can be applied as early as possible will be

critical [40]. In children with autism, several measures

have been reported that have predictive power for deficits

later in life. These include early behavioral deficits such

as shifting of visual attention [41], and morphological

changes in brain volume measured with MRI [42].

Electrophysiological differences, such as visual evoked

potentials measured by EEG, have also been found and

even share similarities between patient and mouse mod-

els [43]. In the future, the combination of multiple

measures may be sufficient to assess the trajectory and

circuit-based nature of disorders in individuals to indicate

the windows for effective intervention.
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