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This paper introduces an end-to-end feedforward convolutional neural network that is able to reli-

ably classify the source and type of animal calls in a noisy environment using two streams of audio

data after being trained on a dataset of modest size and imperfect labels. The data consists of audio

recordings from captive marmoset monkeys housed in pairs, with several other cages nearby. The

network in this paper can classify both the call type and which animal made it with a single pass

through a single network using raw spectrogram images as input. The network vastly increases data

analysis capacity for researchers interested in studying marmoset vocalizations, and allows data

collection in the home cage, in group housed animals. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Convolutional neural networks (in two-dimensions)

have seen a lot of success in the fields of environmental and

animal sound classification (Boddapati et al., 2017). Using

convolution in both the time and frequency domain makes

sense for these tasks since animal calls and environmental

sounds often have distinct structure that can be clearly seen

in spectrograms or other image representations of audio

data. Here we present a neural network for auto detection,

classification, and attribution of vocalizations in the common

marmoset (Callithrix Jacchus).

The impetus for this work is research using marmosets as

a primate model to study mental disorders affecting social

behavior, such as autism (Jennings et al., 2016; Miller et al.,
2016). In marmosets, vocal exchanges are an essential part of

social interaction (Eliades and Miller, 2017), and are at least

partly learned from parents and peers. Analysis of vocalizations

can yield measures of vocal development, and vocal interac-

tions can potentially be used to track sociability and learning of

social rules. However, labeling vocalizations in audio record-

ings is labor-intensive; therefore, automation is valued highly.

Our dataset consists of dual channel recordings from

normal, captive marmoset monkeys housed in pairs, where

each animal wears a voice recorder. The data is annotated by

researchers for a variety of call types. We present a neural

network that can detect and classify the calls from each ani-

mal with high accuracy based on the spectrogram. We use

one network with two convolutional streams, which are

concatenated in the end and followed by a single fully

connected layer with dropout before a final softmax layer

that classifies both the type and the source of the animal call.

In this paper, Sec. II covers background and previous

models, Sec. III describes the details of the experiment, the

dataset, and the neural network model; in Sec. IV we report the

results, and in Sec. V, we present a discussion and conclusions.

II. BACKGROUND AND RELATED WORK

The common marmoset (Callithrix Jacchus) is among the

smallest primates and is gaining interest as a non-human pri-

mate model for neuroscience research (Jennings et al., 2016).

The species lends itself well for studying social behavior, since

marmosets have features in common with humans that are not

found in every primate species, such as vocal interaction, imita-

tion, and cooperative breeding (Miller et al., 2016). In the vocal

domain, marmosets have a repertoire of at least eight call types,

which occur in different conditions, and are thought to convey

different information to others. For example, there are calls that

serve to maintain contact with members of their group, calls

that broadcast the presence of a threat and calls that signal

inter-group threats (Bezerra and Souto, 2008; Miller et al.,
2010). In both humans and marmosets, vocal interactions are

structured and organized according to set principles (Sacks

et al., 1974). The exchange of contact calls between marmosets

shows a turn-taking dynamic that is comparable to turn-taking

in human conversation and other interactions (Henry et al.,
2015; Levinson and Torreira, 2015).

We distinguish three functions that an automatic

vocalization-detection system should perform in order to

vastly speed up the study of vocal interactions: Detection

(whether there is a vocalization), Classification (which type

of vocalization it is), and Attribution (which animal vocal-

ized). Automated classification has been done in various spe-

cies, including rodents (Kobayasi and Riquimaroux, 2012;

a)Electronic mail: landman@mit.edu
b)Also at: Stanley Center, Broad Institute, 57 Ames Street, Cambridge, MA

02139, USA.

654 J. Acoust. Soc. Am. 145 (2), February 2019 VC 2019 Acoustical Society of America0001-4966/2019/145(2)/654/9/$30.00

https://doi.org/10.1121/1.5087827
mailto:landman@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5087827&domain=pdf&date_stamp=2019-02-01


Soltis et al., 2012), frogs (Pettitt et al., 2012), birds (Giret

et al., 2011), bats (Prat et al., 2016) and primates (Fuller,

2014; Hedwig et al., 2014), including marmosets (Agamaite

et al., 2015; Turesson et al., 2016; Zhang et al., 2018). In previ-

ous marmoset studies, it was possible to detect the vocaliza-

tions by amplitude thresholding of the band- or high-passed

audio signal. Attribution was not part of these efforts. As input

for classification Agamaite et al. (2015) extracted 18 acoustic

features, chosen by the investigators, in both the time and fre-

quency domain (see Table I in Agamaite et al., 2015). Turesson

et al. (2016) used Linear Predictive Coding filters for feature

extraction. Zhang et al. (2018) is the most recent work to auto-

matically classify marmoset calls with higher classification accu-

racy and low frame error rate. They employed a deep recurrent

neural network with fully connected layers and Long Short

Term Memory (LSTM) (Graves et al., 2013), in some cases.

The data acquisition was from only one animal at a time and

thus there is no source attribution or the need to separate back-

ground calls. Furthermore, in Zhang et al. (2018), the audio

recordings were preprocessed using bandpass filters and log-mel

filter banks to manually select features to train the network. Call

detection and classification were two separate processes and their

performance too was evaluated individually.

The current study is different from previous marmoset

studies in several ways. First, recordings were done in a noisy

environment. The animals were in their home cage with their

cage partner in a room with multiple other cages with animals.

While there is benefit in studying animals in conditions where

they feel at home and can freely interact with their cage mates,

the added noise from animals, cages, air-vents, human person-

nel, etc., makes it that amplitude thresholding is not sufficient

for detecting whether there is a vocalization. Second, our goal

was to attribute vocalizations to individuals that are freely

moving within the same cage. Attribution is not trivial under

these circumstances, because the animals are not spatially sepa-

rated. We choose to use wearable voice recorders for that rea-

son, and attribute calls using the neural network. The ideal

result would be a system where we input two raw audio files

and the output is a list of one row per call and columns with

start time, stop time, call type, and ID (animal 1 or animal 2).

III. EXPERIMENT

Our dataset consists of audio recordings done on pairs

of animals sharing a cage, each wearing a voice recorder.

Between 8 and 20 other animals are present in the room, in

other cages. The voice recorders (Polend mini 8GB voice

recorder) are mounted at the chest in custom made jackets. The

animals are thoroughly habituated to wearing the jackets before

recording starts. All animal procedures are overseen by veteri-

nary staff of the Massachusetts Institute of Technology (MIT)

and Broad Institute Department of Comparative Medicine, in

compliance with the National Institutes of Health Guide for

Care and Use of Laboratory Animals and approved by the MIT

and Broad Institute animal care and use committees.

The dataset contains recordings from 16 different indi-

viduals in 8 pairs, sampled at 48 kHz. 36 recording sessions

were done, each between 30 and 150 min in duration. Total

duration of all sessions is 38 h. Each recording session yields

two mono wav audio files, one for each member of the dyad

under study. After each session, the audio files are manually

aligned and annotated using Audacity software version

2.1.3.1 The data are annotated by researchers for the occur-

rence of eight different call types: Trill, Twitter, Phee,

Chirp, Tsik, Ek, Trillphee, and Chatter. Figure 1 shows an

example spectrogram of each of the eight call types.

Annotation is primarily done by inspecting spectrograms.

Attribution of calls to either of the two animals wearing a

microphone is based on amplitude, reverb, and distinctiveness

of the spectrogram image. The calls that can not be attributed

are considered to be from other animals in the room and classi-

fied as noise. To classify call types, we start by using published

classifications (Bezerra and Souto, 2008; Epple, 1968; Watson

and Buchanan-Smith, 2018), but some call types are either

very uncommon or difficult to distinguish from other call types.

For example, we do not distinguish “Loud Shrill,” and “Seep”

(Watson and Buchanan-Smith, 2018). For training the network,

we use the call types for which we have at least 80 exemplars.

A total of 15 970 marmoset calls labeled by humans are used

for training the network.

The audio files are split into 500 ms segments with 70%

overlap. Table I shows the number of segments for each call

type in the dataset, including the noise category. Spectrograms

of the segments are generated using a hamming window, size

10.7 ms and 82% overlap, yielding spectrogram images of size

257� 256. To each pair of spectrograms, one for each simulta-

neously recorded channel, we assign a label based on whether

there is a human annotation of a call in the middle 150 ms of

the window, including the call type and which animal does the

call (ch 1 or ch 2). If no labeled call is present in the segment,

the pair is labeled as noise. Since the vocalizations are brief

and there is some time in between vocalizations, the data is

heavily unbalanced with the vast majority of the labels being

noise. To alleviate this, we only include 20% of the segments

labeled as noise into the training and evaluation datasets.

Testing uses all the data. We designate three sessions for evalu-

ation and another three full sessions for testing. The training

dataset is composed of the remaining 30 sessions. We have

several recordings for each pair of individuals and there can be

recordings from same individuals in both training and test/eval-

uation sets.

The basic structure for our network was chosen based

on small scale tests and previous knowledge of the authors.

In Table III, we show that this structure performs better than

TABLE I. The eight call types we distinguish and the “noise” category, con-

taining vocalizations from animals in the background, and sounds that are

not from animals. Right column: the number of segments included.

Call type Number of segments

Trill 23 549

Twitter 10 614

Phee 10 121

Chirp 5917

Ek 3265

Trillphee 2980

Tsik 2753

Chatter 1399

Noise (no call type) 126 038
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variations with different depth or complexity. This structure

is an end to end feedforward convolutional neural network

with four blocks of two convolutional layers followed by a

max pooling layer for each of the two spectrogram images

that are fed in simultaneously. The convolutional streams are

processed separately, after which the two streams are

concatenated and followed by two fully connected layers.

Each layer uses rectified linear units (Nair and Hinton, 2010)

as activation functions, except for the final layer which uses

the softmax function. Figure 2 shows the architecture of our

standard model. Each model we test shares this architecture

except for when stated otherwise.

Our models are trained for 74 000 iterations with mini-

batch size of 25, which takes about 7 h using a single GPU

FIG. 1. Examples (spectrograms and wave plot) of call types and noises. Row 1–2 (l–r): Chatter, Chirp, Ek, Phee. Row 3–4 (l–r): Trill, Trillphee, Tsik,

Twitter. Row 5–6: four different examples of noise.
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on a computing cluster. The network uses Adam optimizer

(Kingma and Ba, 2015) and a cross entropy loss function

with an exponentially decreasing learning rate that starts at

3� 10�4 and epsilon of 10�3. Figure 3 shows training and

evaluation accuracy during training of the standard model.

Since our network does classification and attribution at

the same time, the design of the final layer can be tailored

accordingly. We experiment with four different layouts for

the final layer, shown in Fig. 4. The final layers with 17 and

9&3 units can only detect a call from one animal at a time.

We also test a 9&9 final layer and a 17 unit multi-class final

layer that uses sigmoid activation functions for the final layer

instead of softmax, so it can detect several calls at a time (2

stream multi-class in Table III). For predicting with the

multi-class network we only look at the highest prediction of

the network for each animal since it is not possible for a sin-

gle animal to make two calls at the same time.

We also test how beneficial it is to use two input streams

by comparing our results against those achieved by training

a network of the same structure but with only one input

stream being fed one of the audio files at a time and only

classifying the call made by that animal.

On our experiments we use a small random vertical and

horizontal shift (up to 2%) of the input the array while feeding

overflowing values on the other end of the array. We also ran-

domize which input gets fed into input1 and input2 and adjust

the labels accordingly in order to try and keep the network

“speaker” independent instead of learning to recognize each

monkey or recording. We explored using more data augmenta-

tion methods such as adding random noise and modifying

amplitude but those proved to not improve performance and

are therefore not used. The standard version of our network

does not use batch normalization (Ioffe and Szegedy, 2015).

The goal of our project is to detect, classify, and attri-

bute each call in a pair of long recordings, which includes

getting a good temporal accuracy. To evaluate performance,

we run the network with 500 ms window size and 90% over-

lap on the test data. To produce each prediction, we take the

average of the predictions using a window centered around

the 50 ms we are predicting, and the windows shifted by 50

and 100 ms to both directions. We then apply a cutoff to this

average, such that predictions where the network’s probabil-

ity (value of the output layer) that the element belongs to the

class is less than a certain cutoff are classified as noise. This

is done for all call types except trillphee, which is a mix

between trill and phee: if the highest prediction is trill or phee,

FIG. 2. (Color online) The architecture of the standard dual stream version of

our network. The kernel size of each layer is shown before the type of the layer

and the dimensions of the layer (excluding batch) are below. Strides of 1 are

used for each convolutional layer and strides of 2 for each max pooling layer.

FIG. 3. (Color online) Development of training and evaluation accuracies of

the standard network (color online).
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we combine the probability of that and trillphee before apply-

ing the cutoff; if highest is trillphee, we sum it together with

probabilites for trill and phee before applying cutoff. We found

that cutoff values around 0.8 produce the best results.

The network’s performance is measured by discretizing the

ground truth into 50 ms segments and labeling each of these

according to the original labels. We then test the accuracy of

our model on this data. Table II shows the definitions of the

metrics we use to evaluate our results. F1-score is the main met-

ric we use when comparing performance of different models.

IV. RESULTS

We test different versions of our network using cutoff

values of 0, 0.3, 0.4, 0.5, and 0.6–0.95 with increments of

0.05. Figure 5 shows how changing the cutoff affects recall,

precision, and F1-score.

Table III shows the best F1-score obtained by each ver-

sion among the tested cutoffs. As a baseline example we

also train a single stream model with the AlexNet

(Krizhevsky et al., 2012) architecture on our data.

Our best performing model is able to achieve an F1-

score of 0.8083, and a framewise accuracy of 0.9916 on the

test set, with the accuracy being significantly higher than F1-

score due to vast majority of frames being noise. We can see

that small changes to network architecture do not result in

very significant differences in final performance, all nine

FIG. 4. (Color online) A: The standard 17 unit final layer. B: The 9&3 final layer setup. If at least one of these layers outputs noise the final output will be

noise. C: 9&9 final layer setup, D: 17 unit multiclass final layer. C and D are capable of detecting two calls at the same time, unlike A and B.

TABLE II. Definition of terms.

Term Explanation

True positive (TP) There is a call in the frame and it was correctly clas-

sified by the network

False positive (FP) There is no call in the frame, but the network pre-

dicted a call

True Negative (TN) There is no call and the network predicted no

call(¼noise)

False Negative (FN) There is a call but the network predicted a wrong

call, or no call

Recall #TP/(#TPþ#FN)

Precision #TP/(#TPþ#FP)

F1-score 2*Recall*Precision/(RecallþPrecision)

Accuracy Standard framewise accuracy, (#TPþ#TN)/

(#TPþ#FPþ#TNþ#FN) FIG. 5. (Color online) Recall, precision, and F1-score of the standard model

(17 output nodes) as a function of cutoff.
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networks utilizing dual audio input reach F1-scores between

0.7793 and 0.8083. Interestingly, batch normalization (two
stream with 9&9 output layers and batch norm in Table III)

does not improve the performance of our network and

instead seems to result in slightly lower accuracies. This

might be because batch normalization has a regularizing

effect, and/or network is already using dropout, so the com-

bination of both might be reducing the expressive power of

the network too much. The layout of the final layer does not

seem to noticeably affect network performance, with the

exception that networks capable of detecting two simulta-

neous calls seem to perform slightly better than ones that can

not, with all of those reaching F1-scores over 0.8, while

none of the ones that can only detect a single call at a time

do. Figure 6 shows an example of the network detecting two

different calls at the same time. Training the network with

categories evened out produces a high false positive rate

with an F1-score of 0.1633.

Our results show that using two audio streams improves

performance. Each network that uses two input channels

beats every network that uses only one input. The margin is

not very wide, the best performing single stream reaches an

F1-score only 0.0025 lower than the worst performing two

stream network’s score. This difference is most likely

smaller because the networks with single input can detect

two simultaneous calls while the worst performing two

stream networks can not. Regardless, the difference is clear

enough to see that two inputs are beneficial.

Our network is trained to replicate the labels of human

observers, yet between human observers, there is inherent

variability. Our database is annotated by only a single

observer per observation. To better appraise the performance

of the network, it is useful to know whether the difference

between the network and the human observer is bigger or

smaller than the difference between human observers.

Therefore, we ask a different human observer to re-label the

TABLE III. Test accuracy, recall, precision and best F1-scores for all models tested.

Model Test accuracy Recall Precision Best F1-score

Single stream AlexNet 0.9887 0.7674 0.7109 0.7381

Single stream standard 0.9906 0.7864 0.7674 0.7768

Two stream standard (four blocks) 0.9910 0.7925 0.7804 0.7945

Two stream with twice the amount of filters 0.9907 0.8181 0.7561 0.7793

Two stream, five blocks 0.9905 0.8026 0.7573 0.7793

Two stream, three blocks 0.9910 0.8184 0.7672 0.7920

Two stream standard with 9&3 output layers 0.9913 0.8170 0.7770 0.7965

Two stream with 9&9 output layers 0.9916 0.8468 0.7731 0.8083

Two stream with 9&9 output layers and batch normalization 0.9914 0.8262 0.7758 0.8002

Two stream multi-class (17 output) 0.9918 0.8123 0.7961 0.8042

Human researcher 0.9889 0.8508 0.6896 0.7618

FIG. 6. An example of our best performing model detecting two different calls simultaneously on a test session. The recording is from two marmosets housed

in the same cage, each wearing a microphone located at the chest (as all the recordings in our dataset). The top spectrogram shows animal 1, and the bottom

spectrogram shows animal 2. Many marmoset calls are visible in both spectrograms, yet certain marmoset calls are clearly more pronounced on one channel

than on the other. Between time points 33.10 and 33.12 there is a “phee” call which is equally pronounced on both mics, and likely was produced by an animal

in another cage. At 33.13, a “trill” call occurs. It is most pronounced on ch1, and this was labeled as a call coming from animal 1, but both human observer

and the network. At the same time, a “twitter” call begins. This is more pronounced on ch2 and is labeled as such by both human and network. This figure was

created using Audacity software (footnote 1).
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test sessions and test how closely these labels match the origi-

nal observer using the same metrics we used for measuring the

performance of our network. The result shows that the second

human observer is less accurate than our network in replicating

the original labels (“human researcher,” Table III). This under-

scores not only that there is variability between observers, but

also that our network can perform better than some human

observers given this set of training data.

Inspired by these results, we also measure accuracy

again using the labels created by the second human observer

(human relabel) as ground truth instead of the original ones.

The results of this experiment are shown in Table IV. Our

best network achieves an F1-score of 0.7858 when compared

to the human relabels, while the original human labels only

reaches an F1-score of 0.6694 in this comparison. Our net-

works’ predictions are closer to both human labels than they

are to each other.

We also test our network on the marmoset call dataset

shared introduced in Turesson et al. (2016). This dataset

consists of 321 segmented calls, so it is much smaller than

our dataset, and because the calls are pre-segmented, the

task is one of classification, not detection. Our network is

optimized for larger datasets, and as such, has the risk of

overfitting to smaller dataset; however, we are able to

achieve good results. We train a single stream normalized

version of our network from scratch for 600 batches of 25

examples 10 times while using 90% of the calls in each call

type for training, and evaluate accuracy on the remaining

10% (randomly selected). For training, we create spectro-

gram images of 500 ms sliding window with 200 ms steps

over the duration of each call and label each image with the

label of the call. For prediction, we run the network with

each window of the call and use the mean of those as our

prediction. Table V shows our results measured by the met-

rics defined by Turesson et al. We find out that our net-

work’s accuracy is better than the best model tested by

Turesson et al., which is a Support Vector Machine (SVM)

model with Linear Predictive Coding (LPC).

We implement our network into an easy to use program

that can classify marmoset recordings. We also optimize its

performance, which allows our network to classify (includ-

ing spectrogram transformations) an hour long audio record-

ing in 8 min using a laptop with Nvidia GeForce GTX 1060

graphics card and Intel Core i5 processor. Our model as well

as source code used for the results in this paper and a subset

of our data are freely available at http://marmosetbehavior.

mit.edu (Oikarinen et al., 2019).

V. DISCUSSION

The end-to-end feedforward Convolutional Neural

Network (CNN) introduced in this article is one of a kind, in

that it is capable of automatic call detection, classification of

call types, and attribution of the caller, all together. The net-

work automatically detects whether any given segment of

hour long audio files of dual channel marmoset vocal record-

ings contains a call or not. It then classifies the detected calls

into one of nine types (eight call types þ one noise cate-

gory), and finally attributes the identity of the call to the ani-

mals wearing the microphone (either of the two animals or

neither). In addition, we have adapted the CNN for single

stream audio recordings as well. To our knowledge, this task

optimized feedforward CNN gives the best performance to

date on automatic vocal classification of marmoset calls.

Unlike previous efforts that classify call types on noise-

free, pre-segmented audio (Agamaite et al., 2015; Turesson

et al., 2016), our network uses raw, noisy spectrograms. The

network is thus robust in detecting and classifying in an

environment that is noisy, and does not require any prepro-

cessing of the input audio stream. Agamaite et al. (2015)

describe a quantification of audio features, chosen by the

investigators, to identify different call types. Here, we let the

network learn the useful features that it needs to enable the

trio of detection, classification, and caller attribution.

Our approach is image-based, using the spectrogram of

the audio. However, our dataset is different from many other

image datasets. Typically, large benchmark datasets like

ImageNet (with 15� 106 images, and thousands of catego-

ries) used in testing and validating machine learning algo-

rithms and neural networks are well curated. New object

recognition algorithms typically use a uniform number of

each of the different categories to train their networks.

Unlike such datasets, our training set is quite modest in size

and is not curated (noise-free, anti-aliased, mean-centered,

etc.,), and not trained with a uniform number of samples of

different calls (e.g., more “trill,” or “phee,” than “chatter”)

because not all calls are equally common, yet all calls are

potentially important to study. Regarding the sliding window

of analysis, the size of the window may affect performance.

There is a tradeoff between long windows being better for

detecting long vocalizations and short windows being better

for detecting short duration signals. Small scale preliminary

tests lead us to choose a length of 500 ms as the optimal

length. Future efforts might benefit from using multiple- or

adaptive window lengths.

Turesson et al. (2016) used a very small, but well

curated dataset (321 calls) which they have made freely

available. They applied several machine learning and neural

network algorithms and found that an SVM with LPC had

the best performance metrics. Training our network from

scratch achieved better than their top performance. This

shows that our convolutional network contains robust

learned representations and that it can classify marmoset

TABLE IV. F1-scores for human relabels and our best model.

Ground truth Original Original Human relabel Human relabel

Predictions Computer Human relabel Computer Original

Best F1-score 0.8083 0.7618 0.7858 0.6694

TABLE V. Performance of our network on the Turesson et al. (2016) data-

set and comparison with their model.

Model F1-score Accuracy

Our network trained from scratch 0.890 0.936

SVM with LPC (their best) 0.852 0.843
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calls recorded in different environmental scenarios. We

believe even better results could be achieved with this data-

set using our model after careful hyperparameter optimiza-

tion. Besides other marmoset datasets, it is very well

possible that the convolutional network we have designed

here is capable of transfer learning to be adapted for vocal

classification in other species. Our shared code is freely

available for others to use.

Our study diverges from Zhang et al. (2018) in that we

recorded from two animals instead of one which is a step

towards analyses on social behavior but required us to solve

the problem of source attribution. Similar to Agamaite et al.
(2015), Zhang et al. (2018) hand-picked three short-time

acoustic features that are extracted for each audio frame:

energy, peak-ratio of autocorrelation (PRA), and log mel-

filter bank spectrum. It is these features that are used for

detecting voiced vs non-voiced segments, and later to train

the network on the extracted log mel-filter bank spectra. The

call detection employed was a rule-based threshold detection

algorithm that is applied in many human speech processing

systems for voice activity detection (VAD). Thus, call detec-

tion and classification were done separately, with a rule-

based approach for detection followed by a neural network

training for call classification. In our approach, we directly

feed our network raw, noisy spectrograms from the dual

channels that contain background animal calls, and a variety

of noise in the environment. Detection, classification, and

attribution are performed by a single network and we avoid

the possible bias that could be introduced by hand-picking

features. Our effort with separate detection and classification

models (Sharma et al., 2017) achieved 80.5 and 88.25%

accuracy for detection and classification, respectively, and

therefore lower than the performance of the network we pre-

sent here. The neural network of Zhang et al. (2018) is a

fully connected recurrent neural network (RNN) with

LSTM, while ours is a feedforward deep convolutional neu-

ral network. We found that adding LSTM layers to our sys-

tem does not improve the performance on the task.

Many systems have applied the architecture of AlexNet

(Krizhevsky et al., 2012) to a high degree of success. In that

vein, we trained an AlexNet model on a single stream of our

dataset with the raw spectrograms as the input images. The

performance of this network was much worse than our con-

volutional network (both single and dual stream audio).

Newer models are available, such as ResNet (He et al.,
2015). However, ResNet is much bigger than our model or

AlexNet, and would be slower and have higher hardware

requirements to run. Also, our task is smaller than ImageNet

in terms of number of classes and number of examples. The

performance of our network for the data set from Turesson

et al. (2016) shows that as a proof of principle, we have a

task optimized convolutional network that has learned fea-

tures generalized over the space of vocal calls.

We show that our network more closely replicates label-

ling from a human observer than a second human observer is

able to replicate the first human observer. This highlights

that there is considerable variation in human labelling, even

among experts. In the existing literature, there is consider-

able variation in the definition and number of call types

distinguished (e.g., Bezerra and Souto, 2008; Epple, 1968;

Watson and Buchanan-Smith, 2018). Further improvement

of auto-detection and classification efforts will be aided by

standardization of the definition of call types (e.g., “phee,”

“short phee,” “long phee,” etc.), naming conventions, and a

robust, yet flexible dataset (with noise, multiple streams,

etc.). Additional areas of improvements include having an

expanded training set, labels, and timings of the calls corrob-

orated by multiple humans to increase reliability.
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