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Abstract

Functional studies on postsynaptic scaffolding proteins at excitatory
synapses have revealed a plethora of important roles for synaptic struc-
ture and function. In addition, a convergence of recent in vivo func-
tional evidence together with human genetics data strongly suggest that
mutations in a variety of these postsynaptic scaffolding proteins may
contribute to the etiology of diverse human psychiatric disorders such
as schizophrenia, autism spectrum disorders, and obsessive-compulsive
spectrum disorders. Here we review the most recent evidence for several
key postsynaptic scaffolding protein families and explore how mouse ge-
netics and human genetics have intersected to advance our knowledge
concerning the contributions of these important players to complex
brain function and dysfunction.
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PSD: postsynaptic
density
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INTRODUCTION

The Anatomy of the Postsynaptic
Specialization at Excitatory Synapses

The chemical synapse is a microscopic physical
structure that conveys electrical signals from
presynaptic to postsynaptic neurons within
brain circuits by means of chemical neuro-
transmitter release and action. Both excitatory
and inhibitory neurotransmitter release act in
concert under constant fine-tuning to orches-
trate the flow of information processing in the
nervous system. Most excitatory synapses are
formed between presynaptic boutons loaded
with glutamate-filled synaptic vesicles and
tightly apposed protrusions of postsynaptic
receptor-laden dendritic spines.

The dendritic spine is a highly specialized
structure that is both complex and elegant.
Electron microscopy images of excitatory
synapses prominently feature a dense proteina-
cious matrix at the tip of the spine head imme-
diately underlying the postsynaptic membrane
face. This protein mesh is called the postsy-
naptic density (PSD), and decades of research
using primarily biochemical and molecular
cloning methods have led to the identification
of many prominent PSD constituents. The
PSD contains many distinct classes of proteins,
including neurotransmitter receptors, cell
adhesion molecules, ion channels, signaling
molecules, and scaffolding proteins (Figure 1).
The dynamic nature and precise topographical
organization of these components give rise to
a supramolecular signal-processing machine.

Scaffolding Proteins Constitute
the Structural Core of the
Postsynaptic Density

Scaffolding proteins are extremely abundant in
the PSD, both in terms of absolute protein copy
numbers and the distinct types of scaffolding
proteins that have been described to date
(Kim & Sheng 2004, Sheng & Hoogenraad
2007). The most well-studied postsynaptic
scaffolding proteins include members of the
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Neurexin
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Figure 1
Scaffolding protein networks at the postsynaptic density (PSD). Schematic of the major family members of PSD scaffolding proteins at
excitatory synapses. Current information from structural studies suggests that Shank protein can dimerize through C-terminal sterile
alpha motif (SAM) domain–SAM domain interaction and form a supramolecular polymeric network with Homer tetramers. This
complex may connect to perisynaptic mGluRs and to synaptic NMDA and AMPA-type ionotropic glutamate receptors through the
PSD95 and SAPAP (SAP90/PSD95-associated protein) family of proteins. The Shank/Homer platform may also provide key
connection points to the spine actin cytoskeleton. A-kinase anchoring protein (AKAP) is another important protein that can anchor
kinases and phosphatases (not shown here) in the vicinity of synaptic receptors and ion channels.

AKAP: A-kinase
anchoring protein

SAPAP: SAP90/
PSD95-associated
protein

PSD95 family, select members of the A-kinase
anchoring protein (AKAP) family, the Homer
family, the SAP90/PSD95-associated protein
(SAPAP) family, and the SH3 and multi-
ple ankyrin repeat domain (Shank) family.
Scaffolding-protein families are generally
defined by a highly conserved organization of
domains for protein-protein interactions, and
it is the unique combinations and properties
of these domains that impart a specificity of
protein-protein interactions exhibited by each
of these families (Figure 2). Furthermore,

postsynaptic scaffolding proteins can interact
with multiple binding partners simultaneously
to physically link PSD components and, thus,
can be viewed as the master organizers within
this specialized structure.

Here we aim to highlight evidence from the
recent literature concerning the in vivo func-
tional roles served by the major postsynaptic
scaffolding protein families. We further exam-
ine findings that have emerged from human
genetics investigations exploring variations
in genes that encode postsynaptic scaffolding

www.annualreviews.org • Mutations in Scaffolding Proteins 51
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Figure 2
Physical interactions via discrete binding domains in postsynaptic density (PSD) scaffolding proteins. Representation of the known
atomic structures from crystallized domains in key PSD scaffolding proteins, highlighting interactions at known binding sites. For
simplicity, protein domains that have not been resolved at the atomic level are displayed in white. Represented domains include the
PDZ and SH3 domains of PSD95 and Shank family proteins, the GK domain in PSD95 family proteins, the Ank and SAM domains in
Shank family proteins, and the EVH1 and coiled-coil (CC) domains in Homer family proteins (information on these structures was
obtained through the RCSB Protein Data Bank http://www.pdb.org).

MAGUK:
membrane-associated
guanylate kinase

Ortholog: genes in
different species that
evolved from a
common ancestral
gene and have retained
the same function

DLG: discs large

PDZ domain:
PSD95, Dlg, and
ZO-1 domain

proteins in relation to psychiatric disorders
(see Diversity of Human Psychiatric Disorders,
sidebar below). More comprehensive coverage
of other known PSD scaffolding molecules,
particularly with respect to structural con-
siderations, can be found elsewhere (Chen
et al. 2008, Kim & Sheng 2004, Sheng &
Hoogenraad 2007).

PSD95/MAGUK FAMILY

Membrane-associated guanylate kinase
(MAGUK) proteins form a superfamily of
scaffolding proteins present in several organ-
isms and serving various cellular roles. Here,
special consideration is given to the commonly

defined PSD95 family of proteins, a subfamily
of MAGUKs comprised of synapse-associated
protein (SAP)102, SAP97, PSD93, and PSD95.
These MAGUKs are orthologs of Drosophila
DLG (discs large), the first cloned MAGUK
(Woods & Bryant 1991).

The PSD95 protein was among the first
components to be identified as a part of the PSD
(Sampedro et al. 1981). Structurally, members
of the PSD95 family share several common
protein-protein interaction domains. From the
N to C terminus these include an L27 do-
main, three PDZ domains (PDZ1, PDZ2, and
PDZ3, termed after their occurrence in three
related MAGUKs, PSD95, Dlg, and ZO-1), an
SH3 domain (SRC homology 3 domain), and a
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GK domain:
guanylate kinase-like
domain

NMDAR:
N-methyl-D-aspartate
receptor

AMPAR: α-amino-3-
hydroxy-5-methyl-4-
isoxazolepropionic
acid receptor

C-terminal catalytically inactive guanylate
kinase-like (GK) domain (Kuhlendahl et al.
1998).

PDZ domains are found in a wide variety
of eukaryotic proteins and display considerable
sequence variation, presumably underlying
functional diversity and binding specifici-
ties (Sheng & Sala 2001). The majority of
known PDZ domains interact with a canonical
C-terminal sequence found in the binding
partners. Some of the most notable binding
partners to the first two PDZ domains of
PSD95 include the Shaker-type K+ channels
and NR2A subunits of the N-methyl-D-
aspartate type glutamate receptor (NMDAR),
both through C-terminal PDZ binding motifs
(Kim et al. 1995, Kornau et al. 1995). Neu-
roligins, a family of cell adhesion molecules
located at synapses, also bind to the third PDZ
domain in PSD95 through a C-terminal PDZ
motif (Irie et al. 1997). The demonstrated
interactions were later expanded to include sev-
eral members of the PSD95 family: PDZ1 and
PDZ2 from SAP97 emulate the NR2A/PSD95
interaction, whereas in SAP102 all three PDZ
domains can bind to the NR2B subunit of
the NMDAR. Finally, PSD93 also interacts
and promotes the clustering of NMDAR
subunits in heterologous cells (Kim et al. 1996,
Niethammer et al. 1996). PDZ domains are
also responsible for the regulation of α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid
type glutamate receptors (AMPARs). SAP97
directly interacts with the GluR1 subunit of
the AMPAR and is involved in the trafficking
of these channels (Leonard et al. 1998). How-
ever, the interaction between GluR subunits
and PSD95 is indirectly mediated through
transmembrane AMPAR regulatory proteins
such as Stargazin (Chen et al. 2000, Schnell
et al. 2002, Tomita et al. 2004).

In PSD95, both SH3 and GK domains
bind to and promote clustering of the Kainate-
type ionotropic glutamate receptors (Garcia
et al. 1998). These domains also exhibit
intramolecular SH3-GK self-binding (McGee
& Bredt 1999), suggesting the possibility
that SH3 domains in PSD95 family proteins

DIVERSITY OF HUMAN PSYCHIATRIC
DISORDERS

Autism spectrum disorders (ASDs): a group of neurodevelopmen-
tal disorders sharing similar core features such as social impair-
ments, language or communication defects, and repetitive be-
haviors. Examples include autism, Rett syndrome, and Asperger
syndrome.

Obsessive-compulsive spectrum disorders: a group of psychi-
atric disorders sharing core features such as recurrent obsessions,
increased anxiety, and compulsive repetitive behaviors. Examples
include obsessive-compulsive disorder (OCD), compulsive hair-
pulling/Trichotillomania (TTM), Tourette syndrome, and body
dysmorphic disorder.

Mood disorders: a group of psychiatric disorders in which the
primary symptom is extreme disturbance in mood, such as expe-
riencing either a limited or exaggerated range of feelings. The
most prominent examples include major depression and bipolar
disorder.

Schizophrenia: a psychiatric disorder characterized by a per-
vasive disruption in the normal balance of thought and emo-
tion. Symptoms can be divided into three clusters: positive symp-
toms (hallucinations, delusions, or disorganized speech and/or
thoughts), negative symptoms (lack of pleasure or lack of affect),
and cognitive symptoms (attention or working memory deficits).

bind with partners outside of the archetypical
SH3 interactions with proline-rich motifs. A
prominent binding partner of the GK domain
is the SAPAP family of scaffolding proteins
(Kim et al. 1997, Satoh et al. 1997, Takeuchi
et al. 1997). An additional partner to the GK
domain of PSD95 is SPAR (Spine-associated
RapGAP). This protein regulates spine mor-
phology and displays actin-reorganization
activity (Pak et al. 2001).

Mutational Analysis of PSD95 Family
Function In Vivo

Manipulating the expression levels of PSD95
family proteins has yielded several insights
into the role these proteins play at the synapse.
Overexpression of PSD95 in dissociated
neuron cultures and organotypic slices causes
an enhancement of AMPAR-mediated, but
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Copy number
variations (CNVs):
submicroscopic
unbalanced structural
genomic variations
ranging from the
kilobase to megabase
scale, potentially
giving rise to increased
or decreased gene
copy numbers

not NMDAR-mediated synaptic currents
(El-Husseini et al. 2000, Schnell et al. 2002).
Conversely, knockdown of PSD95 leads to
decreased AMPAR-mediated synaptic currents
(Ehrlich et al. 2007). Manipulations of PSD93
and SAP102 protein levels led to similar func-
tional alterations (Elias et al. 2006). Further-
more, the in vivo role of PSD95 family mem-
bers was probed by the analysis of genetically
modified mice harboring mutations in these
genes. From these, SAP97 mutant mice are less
amenable for study using homozygous germline
deletion, given that this perturbation results
in perinatal lethality (Caruana & Bernstein
2001). By contrast, SAP102 (Cuthbert et al.
2007), PSD93 (McGee et al. 2001), and PSD95
(Beique et al. 2006, Migaud et al. 1998, Yao
et al. 2004) mutant animals manifest only subtle
phenotypes. Perhaps the most salient findings
have come from a distinct line of PSD95
mutant mice that display augmented sensitivity
to the locomotor-stimulating effects of cocaine
and enhanced cortical-accumbal long-term
potentiation but an absence of cocaine-induced
behavioral plasticity (Yao et al. 2004). More
recently, further research with PSD95 mutant
mice revealed that these animals display several
behavioral deficits relevant to autism spectrum
disorders (ASDs) (Feyder et al. 2010). Nev-
ertheless, the lack of obvious overt synaptic
deficits in PSD95 and PSD93 mice suggests
functional redundancy and/or compensation
among PSD95 family members. To elucidate
this, a tour de force study achieved a functional
ablation of PSD95, PSD93, and SAP102 by
combining PSD95/PSD93 double-knockout
animals with SAP102 knockdown (Elias et al.
2006). This work illustrated how synaptic
specificity and developmental regulation of
AMPARs is influenced by PSD95 and PSD93
in nonoverlapping populations of mature
synapses, whereas, SAP102 plays an important
role at immature synapses. Moreover, SAP102
is upregulated in response to PSD95/PSD93
deletion, thus contributing to the remarkable
functional redundancy within this protein
family (Elias et al. 2006). More broadly, this
work highlights the difficulties encountered

in trying to assess the in vivo functional roles
of particular proteins when closely related
genes are expressed (or become expressed) in
partially overlapping cell populations.

Human Molecular Genetics Data
for PSD95 Gene Family

Several groups have reported altered levels
of PSD95 family proteins in patients afflicted
with mood disorders or schizophrenia (Feyissa
et al. 2009, Karolewicz et al. 2009, Kristiansen
et al. 2006, Toro & Deakin 2005, Toyooka
et al. 2002). Although these data hint at the
possibility that altered expression of PSD95
family proteins may play a role in human
psychiatric disorders, they in no way address
whether such changes are an epiphenomena or
if they are in some way causative. Nevertheless,
further converging evidence has come from
studies examining the involvement of the
DLG1-4 genes (DLG1/SAP97, DLG2/PSD93,
DLG3/SAP102, DLG4/PSD95) in psychiatric
disorders. Of particular note is the associa-
tion of DLG1 with the 3q29 microdeletion
syndrome—a condition characterized by mild-
to-moderate mental retardation, dysmorphic
facial features, ataxia, and autism (Willatt et al.
2005). This microdeletion leads to the elimi-
nation of PAK2 and DLG1, which purportedly
underlie both dysmorphic and neurological
symptoms (Willatt et al. 2005). Furthermore,
DLG1 copy number variations (CNVs) have
been identified in patients diagnosed with
schizophrenia (Magri et al. 2010, Sato et al.
2008). DLG3 has been strongly implicated in X-
linked mental retardation (Tarpey et al. 2004),
whereas DLG4 was recently linked to autistic
behaviors and schizophrenia (Cheng et al.
2010, Feyder et al. 2010). Together, these mul-
tiple lines of evidence support the hypothesis
that the various members of the PSD95 family
of proteins collectively contribute toward the
healthy functioning of the mammalian brain.

AKAP FAMILY

The A-kinase anchoring protein (AKAP) fam-
ily is comprised of a broad collection of proteins
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Null mutation:
a genetic lesion that
ablates gene function
completely, most
commonly through
the functional
disruption of mRNA
or protein production

defined by the ability to anchor protein kinase A
(PKA) (Wong & Scott 2004). As such, AKAPs
serve critical roles in the spatial and temporal
regulation of PKA activity and intracellular sig-
naling cascades. The AKAP family members are
classified according to this PKA binding ability
rather than on sequence similarity; therefore,
AKAPs are structurally very diverse.

The AKAP5 gene encodes AKAP5,
commonly known as AKAP79 in humans
and AKAP150 in rodents ( jointly called
AKAP79/150). In the brain, AKAP79/150
is highly enriched in the PSD of excitatory
synapses (Carr et al. 1992) by virtue of an
N-terminal polybasic membrane-targeting
region (Dell’Acqua et al. 1998). AKAP79/150
also contains distinct sequences that mediate
anchoring of the protein kinases PKA and
PKC and the protein phosphatase PP2B (also
called calcineurin) (Carr et al. 1992, Coghlan
et al. 1995, Klauck et al. 1996). In addition
to the anchoring of these important signaling
molecules, AKAP79/150 interacts directly
with the SH3 and GK domains of PSD95 and
SAP97 (Colledge et al. 2000). Importantly,
PSD95 and SAP97 have specific roles in
regulating synaptic localization of NMDARs
and AMPARs, respectively. Thus, distinct
complexes containing AKAP79/150-PSD95-
NMDAR and AKAP79/150-SAP97-AMPAR
exist within the PSD region of excitatory
synapses (Colledge et al. 2000), providing a
molecular basis for differential regulation of the
major classes of ionotropic glutamate receptors
via scaffolding of unique signaling complexes
to different target receptors. AKAP79/150
also interacts directly with and functionally
regulates a variety of other ion channels and
G protein–coupled receptors (Dart & Leyland
2001, Hall et al. 2007, Hoshi et al. 2003, Lin
et al. 2010, Oliveria et al. 2007).

An influential early study in cultured
hippocampal neurons showed that cell-wide
disruption of PKA binding to AKAPs by an
inhibitory peptide (Ht31) led to run-down
of evoked AMPAR-mediated currents in a
manner identical to infusion of a specific PKA
inhibitory peptide (Rosenmund et al. 1994).

Ht31 infusion also caused long-term reductions
in surface AMPAR subunit GluR1 expression in
cultured hippocampal neurons, and it occluded
long-term depression evoked by electrical stim-
ulation in acute hippocampal slices (Snyder
et al. 2005). However, Ht31 broadly interferes
with PKA binding to all AKAPs; therefore, sub-
sequent work was necessary to provide specific
evidence for the involvement of AKAP79/150
in the modulation of AMPAR function.

Two independent studies used an elegant
molecular replacement strategy (depletion
of the endogenous AKAP79/150 followed
by expression of mutant versions) to show
convincingly that expression of PP2B-binding-
deficient AKAP79/150 (AKAP79/150�PP2B)
prevented agonist-induced downregulation
of AMPAR currents in cultured hippocampal
neurons (Hoshi et al. 2005) and abolished
NMDAR-dependent long-term depression in
hippocampal slices ( Jurado et al. 2010). These
results fit well with another report showing
that overexpression of AKAP79/150�PP2B
prevented NMDA-triggered AMPAR en-
docytosis in cultured hippocampal neurons
(Bhattacharyya et al. 2009).

Overall, the anchoring of PKA and PP2B
through AKAP79/150 in the PSD region seems
to exert influences on AMPAR function and
plasticity. These data are largely consistent
with the hypothesis that AMPARs are dy-
namically regulated by phosphorylation and
dephosphorylation of GluR1 subunits, medi-
ated by a functional balance of signaling from
AKAP79/150-anchored PKA versus PP2B
near the receptor substrates. Exactly how an-
choring to AKAP79/150 influences PKA and
PP2B activities in this context and the relative
importance of each to discrete synaptic func-
tions is an open question.

Mutational Analysis of AKAP79/150
Function In Vivo

Two independent laboratories have re-
cently generated AKAP150 null mice (Hall
et al. 2007, Tunquist et al. 2008), provid-
ing ample opportunities to investigate the
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Knock-in mutation:
targeted manipulation
in the mouse genome
aimed at substituting
an endogenous
sequence with an
altered sequence

physiological functions of this scaffolding
protein. Both null mouse lines are viable and
fertile, and both groups demonstrated that
AKAP150 is the major AKAP in the brain re-
sponsible for proper anchoring of PKA within
dendritic regions, consistent with the PSD
localization of AKAP150. One line also has
deficits in motor coordination and strength,
consistent with the expression of AKAP150 in
the cerebellum (Tunquist et al. 2008).

A third AKAP150 mutant mouse line har-
boring a knock-in mutation has also been gen-
erated by introducing a premature stop codon
that results in the deletion of the last 36 amino
acids from the C terminus of the AKAP150
protein and fully eliminates PKA anchoring
by AKAP150 (i.e., AKAP150�PKA), hence the
term D36 mice (Lu et al. 2007). D36 mice and
AKAP150 null mice both showed abnormally
increased numbers of dendritic spines in vivo
and an increased number of functional excita-
tory synapses in acute hippocampal slices (Lu
et al. 2011). These changes are apparent in
the early postnatal and juvenile stages but do
not persist into adulthood. D36 and AKAP150
null mice also had larger and more frequent in-
hibitory synaptic events in acute brain slices
from juveniles, which was suggested to be a
compensatory change to counteract increased
excitatory synaptic function. These findings
point to a role of AKAP150-anchored PKA
in limiting dendritic spine density in vivo, al-
though these data seem at odds with a por-
tion of earlier results obtained using cultured
hippocampal neurons (Robertson et al. 2009).
The functions assessed in vivo using mutant
mice may have more physiological relevance,
although in some cases the potentially con-
founding influence of compensatory changes
may be less of a factor using acute manipula-
tions in vitro.

A surprising finding from multiple studies
comparing the AKAP150 null and D36 mice is
that synaptic plasticity and behavioral pheno-
types are generally more severe in D36 mice
than in the constitutive null mice (Lu et al.
2007, Weisenhaus et al. 2010). For example,

long-term potentiation was impaired in young
adult D36 mice and long-term depression
was impaired in juvenile D36 mice, but no
deficits in either form of long-term plasticity
were detected in the null mice (but see also
Tunquist et al. 2008). Furthermore, reversal
learning was impaired in D36 mice but not
in null mice. The unique deficits in the D36
mice may partially be explained by the fact that
AKAP79/150 normally binds with both PKA
and PP2B at synapses; thus, incorporating
mutant AKAP150�PKA that retains PP2B
binding at the PSD may profoundly alter
the signaling balance more potently in D36
mice than in the AKAP150 null mice. The
AKAP150�PKA deletion also appears to cover
the reported binding site for L-type calcium
channels in the distal C-terminal portion of
AKAP150 (Oliveria et al. 2007), which may
further complicate matters in the D36 mice,
particularly with respect to the contribution of
these channels to postsynaptic calcium entry
during synaptic activity and plasticity. Finally,
given the recent claim that AKAP150�PP2B
mutant mice have been established (Sanderson
& Dell’Acqua 2011), the detailed characteriza-
tion of these mutant mice as measured against
D36 mice will be of great interest.

Human Molecular Genetics
Data on AKAP5

One study reported CNVs in bipolar disor-
der and schizophrenia cases that mapped to
loci containing brain-expressed genes with
known roles in neuronal function, including
AKAP5 (Wilson et al. 2006). The copy number
increase in AKAP5 was validated in a single
bipolar-disorder sample. A second cohort of 60
samples (15 bipolar disorder, 15 schizophrenia,
15 major depression, and 15 healthy control)
was directly tested for CNVs at the identified
loci by quantitative PCR. This replication
phase revealed three cases with copy number
increases in AKAP5 (one bipolar disorder,
one schizophrenia, and one major depression)
with no aberrations detected in controls.
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Synaptic tagging: a
hypothetical construct
explaining the
molecular basis behind
conversion of
temporary synaptic
changes into persistent
or “long-term”
plasticity at specific
synaptic sites

A subsequent study called into question the
reliability of the high-throughput method-
ology and provided evidence that the prior
study may have generated false-positive CNV
results (Sutrala et al. 2007). Two alternative
contrasting methodologies were used to test
for CNVs in schizophrenia cases for the
previously implicated genes. No CNVs in
cases or control samples were found for any of
the genes examined, including AKAP5.

HOMER FAMILY

The Homer family in mammalian species con-
sists of the Homer1, Homer2, and Homer3 genes.
A wide variety of alternatively spliced tran-
scriptional variants of Homer family members
have been described (Shiraishi-Yamaguchi &
Furuichi 2007). A short Homer1a form was first
identified in the hippocampal brain region as an
immediate early gene product that was rapidly
and transiently upregulated in neurons in re-
sponse to seizure (Brakeman et al. 1997). The
remaining Homer forms were subsequently
identified based on sequence homology with
Homer1a and, in particular, by the presence of
a conserved N-terminal EVH1 domain found
in all family members. Notably, many other
family members have a C-terminal coiled-coil
domain that is absent in Homer1a; as such,
these are referred to as long Homer forms.
The predominant long-protein forms isolated
from the brain are Homer1b/c, Homer2a/b,
and Homer3a/b (Shiraishi-Yamaguchi &
Furuichi 2007). The coiled-coil domain me-
diates multimerization of long Homers into
linear tetrameric assemblies in vitro (Hayashi
et al. 2006), whereas EVH1 domain mediates
interactions with proline-rich motifs. Several
important Homer binding proteins have been
identified, including group 1 metabotropic glu-
tamate receptors (mGluR1α/mGluR5), IP3 re-
ceptors, Ryanodine receptors, TRPC channels,
Dynamin3, and Shank proteins (Brakeman et al.
1997; Tu et al. 1998, 1999; Yuan et al. 2003).

The long Homer proteins are found at the
PSD of excitatory synapses (Xiao et al. 1998)

where they serve as scaffolding proteins linking
surface receptors to intracellular signaling path-
ways, most notably, intracellular calcium sig-
naling (Sala et al. 2005). The multimerization
of long Homers into tetramers may be particu-
larly important for linking together a dense ma-
trix of Shanks that form a core structural plat-
form of the PSD specialization (Hayashi et al.
2009). Disruption of tetramerization in neu-
rons using a Homer1b dimeric mutant greatly
reduced spine localization of Homer, Shank,
and PSD95. Furthermore, these changes cor-
related with reduced glutamatergic postsynap-
tic currents, indicating a concerted role of
long Homer tetramerization in controlling the
structure and function of the postsynaptic com-
partment. As such, long Homers may be con-
sidered the “glue” in the dense Shank network
of the PSD, and the tail-to-tail tetrameric ar-
rangement of long Homers with pairs of EVH1
ligand-binding domains at each end can equally
well explain an additional role of physically and
functionally coupling a range of spatially segre-
gated binding partners in perisynaptic regions.

The relationship between the constitutively
expressed long Homer forms and activity-
inducible Homer1a at the synapse has received
much attention. The widely adopted view is that
activity-inducible Homer1a may disrupt the
assembly of long Homer scaffolding complexes
through a competitive EVH1 domain-binding
model in response to dynamic neuronal activity.
This inferred dominant-negative regulatory
mechanism has been demonstrated by direct
experimental evidence in a variety of different
contexts (Kammermeier 2008; Sala et al. 2001,
2003; Tappe et al. 2006; Tu et al. 1998). Other
functional roles for activity-inducible Homer1a
at the synapse have also been described (though
not mutually exclusive), such as inducing con-
formation changes in target receptors to
influence receptor activity (Ango et al. 2001,
Hu et al. 2010), enabling functional crosstalk
between metabotropic and ionotropic gluta-
mate receptor classes at the synapse (Bertaso
et al. 2010), and synaptic tagging in persistent
forms of synaptic plasticity (Okada et al. 2009).
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Synaptic scaling:
a “global” form of
homeostatic plasticity
where synaptic
strength is increased or
decreased to counter
persistent changes in
neuronal activity

Single nucleotide
polymorphisms
(SNPs): DNA
sequence variations at
a single nucleotide
position within an
individual’s genome

GKAP: guanylate
kinase–associated
protein

Mutational Analysis of Homer
Function In Vivo

Homer1 null mice have broad behavioral abnor-
malities consistent with other animal models
of schizophrenia (Szumlinski et al. 2005). No-
tably, the Homer1 null allele eliminates both the
long and short forms of Homer1 that mediate
discrete and, in some cases, opposing functions.
This issue largely precludes detailed investi-
gation into the precise roles of Homer1a and
Homer1b/c in vivo using these mice. Hu et al.
(2010) recently reported a selective Homer1a-
deficient mouse and provided convincing
evidence that Homer1a is largely indispensable
for the induction of homeostatic synaptic
scaling. Upregulation of Homer1a facilitated
agonist-independent signaling at group 1
mGluRs, which was a requisite step leading to
downregulation of synaptic AMPARs.

Both Homer1 null and Homer2 null (but not
Homer3 null) mice exhibit behavioral sensiti-
zation to the psychostimulant cocaine in the
absence of prior cocaine exposure (Szumlinski
et al. 2004). Furthermore, the behavioral
and neurochemical profiles of Homer2 null
mice closely mirror the numerous changes
induced by withdrawal from repeated cocaine
administration. Viral expression of Homer2b
in the striatum normalized the behaviors of the
Homer2 null mice, thus implicating disruption
of striatal Homer2 in enabling cocaine-induced
neuroplasticity. How Homer1 and Homer2
are mechanistically coupled to the efficacy of
cocaine action in the brain remains unresolved.

Long Homer forms are also expressed at low
levels in non-neuronal tissues, and analysis of
Homer function in pancreatic acinar cells using
Homer2 and Homer3 null mice revealed an un-
expected role of endogenous Homer2 (but not
Homer3) in restricting intracellular calcium os-
cillations coupled to the activity of G protein–
coupled receptors (Shin et al. 2003). The idea
of a generalized role for constitutive Homers as
buffers of calcium signaling has recently been
explored (Worley et al. 2007) and is attractive
considering the abundance of binding partners
involved in calcium signaling pathways. Such a

role may exist in addition to a major scaffolding
function, and further work is needed to clar-
ify the relative importance of these functions at
excitatory synapses.

Human Molecular Genetics
Data on Homers

Evidence on the in vivo roles exerted by
Homers at the synapse has led to several
hypotheses concerning Homer dysfunction
in a wide range of neurological disorders
(Szumlinski et al. 2006). In particular, the
broad spectrum of generic schizophrenia-like
behavioral abnormalities exhibited by Homer1
null mice have made Homer1 a good candidate
for gene-association studies in schizophrenia.
One recent study identified numerous single
nucleotide polymorphisms (SNPs) in Homer
genes, including three variants located in exons
(Norton et al. 2003). The evidence for associa-
tion of a single SNP in Homer1 with schizophre-
nia was bordering on statistical significance;
however, the authors concluded that Homers
are most likely not implicated in schizophrenia.
Similar nominally significant evidence has sug-
gested linkage of Homer1 gene variants to major
depression (Rietschel et al. 2010), treatment
response to antipsychotic drugs in schizophre-
nia (Spellmann et al. 2011), or Homer2 gene
variants to psychostimulant abuse (Dahl et al.
2005). A large multisite study reported no
association of Homer1 or Homer2 variants with
alcohol dependence (Preuss et al. 2010), which
failed to substantiate a hypothesized role of
Homer2 in alcohol dependence supported by
several prior studies in mice. In all, the available
evidence linking Homer variants to psychiatric
disorders is tenuous, and the weak evidence
for association in small-scale human genetics
investigations will require further replication
and validation to confirm the suspected links.

SAPAP FAMILY

The SAPAP (also called guanylate kinase–
associated protein or GKAP) family is
composed of four homologous genes encoding
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the SAPAP1-4 proteins that are widely yet
differentially expressed in the nervous system
(Takeuchi et al. 1997, Welch et al. 2004).
The SAPAP family was originally identified
by a direct interaction with the GK domain of
PSD95-family members in yeast two-hybrid
screens (Kim et al. 1997, Satoh et al. 1997,
Takeuchi et al. 1997). SAPAPs are an abundant
component of the PSD (Sheng & Hoogenraad
2007) and interact with a variety of other
PSD proteins (Boeckers et al. 1999b, Hirao
et al. 2000, Kawabe et al. 1999, Yao et al.
1999), suggesting that SAPAPs are important
scaffolding proteins at excitatory synapses.

Mutational Analysis of SAPAP
Function In Vivo

SAPAP3 is the only family member strongly
expressed in the striatum (Welch et al. 2004),
thus offering a unique opportunity to explore
the specific function of SAPAP3 at gluta-
matergic synapses in vivo without potentially
confounding effects of functional redundancy
arising from other SAPAPs in this brain region.
Genetic deletion of SAPAP3 in mice caused be-
havioral abnormalities consisting of increased
anxiety and compulsive self-grooming to the
point of facial hair loss and skin lesions (Welch
et al. 2007). These features share similarity with
various aspects of core symptoms exhibited by
human patients with obsessive-compulsive dis-
order (OCD), and bare a striking similarity to
the phenotypes exhibited by other recently de-
scribed genetic animal models of OCD-like be-
haviors (Chen et al. 2010, Shmelkov et al. 2010).
Consistent with the localization and predicted
function of the SAPAP3 protein, SAPAP3 null
mice also have defects in glutamatergic trans-
mission at cortico-striatal synapses. Remark-
ably, both synaptic and behavioral defects were
rescued by lentivirus-mediated reintroduction
of SAPAP3 specifically into the striatum
(Welch et al. 2007). This finding establishes
the central role of excitatory synaptic dys-
function within cortico-striatal circuitry in the
expression of OCD-like behaviors. Addition-
ally, the chronic administration of the selective

serotonin reuptake inhibitor (SSRI) fluoxetine
successfully alleviated measures of anxiety and
compulsive grooming (Welch et al. 2007)—an
important distinction given that chronic SSRI
treatment is at least partially effective in
alleviating symptoms as a first-line treatment
in OCD. Thus, the SAPAP3 null mouse model
may serve as a novel tool to identify more
effective drugs for the treatment of OCD.

A follow-up study uncovered an altered
form of short-term synaptic plasticity expressed
at excitatory synapses of striatal medium spiny
neurons in acute brain slices from SAPAP3
null mice (Chen et al. 2011). The mechanism
for the anomalous activity-dependent synaptic
depression involved a retrograde endocannabi-
noid signaling pathway through CB1 receptor
activation that was engaged under conditions
that do not normally activate endocannabinoid
signaling in wild-type mice. Further evidence
demonstrated the critical involvement of
increased group 1 mGluR activity or surface
expression as the driving force behind the re-
duced threshold for engaging endocannabinoid
signaling in this experimental paradigm. This
study proposes a previously unrecognized role
for SAPAP3 in regulating mGluR function in
the postsynaptic compartment of excitatory
synapses. Further detailed investigation will
be required to clarify how this anomalous
short-term plasticity at excitatory synapses
onto medium spiny neurons in SAPAP3 null
mice may impact synaptic function in vivo
and to clarify what implications this has for
pinpointing the causal defects underlying
compulsive-repetitive behaviors relevant to
human OCD. At the synaptic level, the emerg-
ing evidence supports the critical involvement
of SAPAP3 in controlling both ionotropic
(Welch et al. 2007) and metabotropic (Chen
et al. 2011) glutamate receptors through a PSD
scaffolding role at excitatory synapses.

Human Molecular Genetics
Data on SAPAPs

The initial report of OCD-like behaviors in
SAPAP3 null mice has prompted several recent
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Paralog: genes that
arose by duplication of
a gene within the
genome; may evolve
new functions over the
course of evolution

human genetics studies of SAPAP3 in OCD
and obsessive-compulsive spectrum disorders.
Zuchner et al. (2009) performed SAPAP3
gene resequencing analysis in OCD and tri-
chotillomania (TTM), an obsessive-compulsive
spectrum disorder, and found an increased
frequency of rare nonsynonymous heterozy-
gous SAPAP3 variants in cases versus con-
trols, thus providing tentative support for a role
of SAPAP3 in OCD and TTM. The major-
ity of the variants represented missense muta-
tions, some of which are predicted to be pos-
sibly detrimental to protein function on the
basis of bioinformatics analysis. These find-
ings await further validation, including anal-
ysis of the functional relevance of these rare
SAPAP3 variants. A second study carried out a
relatively large, family-based gene-association
study of SAPAP3 in OCD and grooming dis-
orders (Bienvenu et al. 2009). The prelimi-
nary evidence suggests that multiple variations
in SAPAP3 are associated with grooming dis-
orders. No clear association between SAPAP3
variants and OCD was reported, although
grooming disorders without OCD were un-
common in this study, suggesting the possibility
that SAPAP3 variants may be involved in a sub-
type of OCD involving pathological grooming
behaviors. A very recent study of similar design
evaluated SAPAP3 as a candidate susceptibility
gene in Tourette syndrome, another obsessive-
compulsive spectrum disorder, and found a
nominally significant association (Crane et al.
2011). A fourth study evaluated SNPs dis-
tributed across the SAPAP3 gene to test for
association of SAPAP3 variants with TTM
and OCD and reported further evidence to
link SAPAP3 variants to TTM and early-onset
OCD (Boardman et al. 2011). Although the
findings of Crane et al. (2011) and Boardman
et al. (2011) are represented as supportive of the
two earlier studies, these results should be inter-
preted with caution because statistical correc-
tion for multiple testing nullified the nominally
significant associations reported in both studies.

Interestingly, in spite of the dearth of
evidence on the functional roles of the other
SAPAPs, some studies have emerged to suggest

involvement of genetic variations in SAPAP1
and SAPAP2 in psychiatric disorders. For
instance, SAPAP1 is located in a chromosomal
region that was reported to harbor a suscep-
tibility locus for schizophrenia and bipolar
disorder (Berrettini et al. 1994, Schwab et al.
1998). This prompted a study to screen for
SAPAP1 mutations in schizophrenia. One
SNP was identified in SAPAP1, but this SNP
was not associated with schizophrenia (Aoyama
et al. 2003). In addition, SAPAP2 was recently
identified as one of several novel candidate loci
in a large study to search out genome-wide
rare CNVs occurring in ASD cases (Pinto et al.
2010). This finding is particularly interesting in
light of the demonstrated interaction between
SAPAPs and Shank3 (Boeckers et al. 1999b),
with strong evidence implicating Shank3
mutations as causative in some ASD cases
(Durand et al. 2007, Gauthier et al. 2009,
Moessner et al. 2007).

SHANK FAMILY

The SH3 and multiple ankyrin repeat domains
(Shank) protein family is coded by three
genes (Shank1-3) that share a high degree of
identity between both paralogs and orthologs.
Characterization of this family of genes was ini-
tiated by cloning Shank2/CortBP1 (Cortactin
binding protein 1) after its identification as a
binding partner to Cortactin (Du et al. 1998).
Shank1 and Shank3 were subsequently isolated
and characterized almost simultaneously by
several groups (Boeckers et al. 1999b, Naisbitt
et al. 1999, Tu et al. 1999). In the rat brain, the
perinatal expression of Shank1-3 is relatively
low but rapidly increases during the first weeks
of development, peaking at 3–4 weeks (Lim
et al. 1999). Expression of Shank1-3 mRNA is
prominent in the central nervous system and
its protein products are enriched in the PSD
(Boeckers et al. 1999a, Lim et al. 1999). More-
over, not only are Shank proteins enriched,
they are also some of the earlier elements coa-
lescing at the PSD, predating the arrival of both
PSD95 and NMDARs (Boeckers et al. 1999a,
Petralia et al. 2005). Finally, the presence of

60 Ting · Peça · Feng

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
12

.3
5:

49
-7

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

6/
29

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



NE35CH03-Ting ARI 12 May 2012 21:39

dendritic-targeting elements in the untrans-
lated regions of Shank1 mRNA adds a further
level of complexity toward transcript transloca-
tion and regulation in neuronal dendrites and
spines (Bockers et al. 2004, Falley et al. 2009).

The Shank protein contains several discrete
domains including (from N to C terminal)
ankyrin repeat domains, one SH3 domain,
one PDZ domain, a proline-rich region,
and a sterile alpha motif domain (Han et al.
2006, Lim et al. 1999). This abundance of
protein-protein interaction domains enables
the interaction of Shank with several other
synaptic proteins and suggests an important or-
ganizational role for these scaffolding proteins.
Specifically, Shanks may sit at a convergent
point for three independent subcomplexes
within the larger PSD. First, Shank proteins
interact with the SAPAP family of proteins
(Naisbitt et al. 1999); SAPAP then binds to
the PSD95 family of proteins, thereby link-
ing ionotropic glutamate receptors to Shank
(Naisbitt et al. 1999). Second, the Homer family
of proteins is another important Shank bind-
ing partner, linking Shanks to metabotropic
glutamate receptors and suggesting that Shank
proteins may form a molecular bridge between
ionotropic and metabotropic glutamate re-
ceptors. Third, Shank proteins interact with
several partners involved in the regulation of
the actin cytoskeleton, including Cortactin
(Du et al. 1998, Naisbitt et al. 1999), α-Fodrin
(Bockers et al. 2001), and Abp1 (Qualmann
et al. 2004). Finally, recent evidence revealed
that Shank and Homer may assemble in
a macromolecular platform of interleaving
Shank3 dimers and Homer tetramers. Owing
to the richness of Shank protein-protein
interaction domains and binding partners, it
is hypothesized that the Shank-Homer matrix
plays a pivotal role in the stabilization and
organization of the larger PSD (Baron et al.
2006, Hayashi et al. 2009, Tu et al. 1999).

Mutational Analysis of Shank
Function In Vivo

Analysis of Shank1 expression in the rodent
brain reveals that Shank1 is highly expressed in

cortical regions and the hippocampal formation
(Bockers et al. 2004, Peca et al. 2011). Shank1
null mice exhibit defects in synaptic function
and behavioral abnormalities consistent with
deficits in hippocampal function and gluta-
matergic synaptic signaling (Hung et al. 2008).
Local abundance of the Shank-interacting
proteins Homer and GKAP was reduced at the
PSD in mutant animals. Disruption of Shank1
also led to smaller dendritic spines in hippocam-
pal neurons and a prevalence of thinner PSDs.
Furthermore, perturbation of Shank1 led to a
decrease in synaptic strength and a reduction
in the frequency of spontaneous postsynaptic
excitatory responses, which could be attributed
to the presence of spines lacking functional
synapses (Hung et al. 2008). At the behavioral
level, Shank1 null mice display an enhanced
acquisition of spatial memories but deficiencies
in memory retention in the same test. Con-
textual memory was perturbed in a test of fear
conditioning, whereas conditioned response re-
mained intact—again suggesting hippocampal
dysfunction (Hung et al. 2008). These defects
in spatial and contextual fear memory are con-
sistent with prominent expression of Shank1
in the hippocampus and the proposed role this
protein may exert in synaptic and spine matura-
tion (Bockers et al. 2004, Sala et al. 2001). Re-
cent work has attempted to assess if autistic-like
phenotypes could be found in Shank1 null mice.
These studies showed that, whereas Shank1
mutants display abnormal motor behaviors
and communication impairments, reciprocal
social interactions in juvenile animals are not
impacted (Silverman et al. 2011, Wohr et al.
2011).

Four different groups have independently
generated and virtually simultaneously char-
acterized a total of five Shank3 mutant mouse
lines (Bangash et al. 2011, Bozdagi et al. 2010,
Peca et al. 2011, Wang et al. 2011). Each line
was largely aimed at ablating specific exons in
the Shank3 gene to induce genetic lesions and
perturb expression of Shank3 isoforms. Inter-
estingly, a remarkable amount of converging
evidence on the in vivo function of Shank3 was
produced. Most notably, all the lines displayed
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Social
behaviors

Repetitive
behaviors

Communication

Shank3+/–

Δ4–9
Shank3–/–

Δ4–9
Shank3–/–

Δ4–7
Shank3–/–

Δ13–16
Shank3+/–

Δ21

Genotype (deleted exons) 

Bozdagi 2010 Wang 2011 Peca 2011 Bangash 2011Peca 2011Reference

No significant difference

Not tested

Robust differences
Multiple assays

Significant differences

Robust differences
or multiple assays

Ultrasonic vocalizations Ultrasonic vocalizations Ultrasonic vocalizations

Dyadic social interaction
Dyadic social interaction

Sociability
Social novelty

Dyadic social interaction
Sociability

Social novelty

Marble-burying
Grooming
Nose-poke

Grooming
Skin lesions

Dyadic social interaction
Sociability

Dyadic social interaction: quantification of social behaviors between two freely interacting mice

Ultrasonic vocalizations: measures in frequency, duration, and complexity of ultrasonic vocalizations 

Sociability: quantification in preference between social and nonsocial targets 
Social novelty: deficits in displaying greater interest for novel interaction partners

Marble-burying: measure for repetitive and/or anxiogenic behaviors

Grooming: measure for repetitive/stereotypical behaviors

Skin lesions: quantification of skin lesions to confirm pathological increases in grooming
Nose-poke: measure for repetitive behaviors during the course of an explorative task

Figure 3
Comparison of autistic-like behavioral deficits in five different Shank3 mutant mouse lines.

varying robustness of several forms of behav-
ioral deficiencies relevant to the study of ASDs,
such as deficits in social interaction, abnormal
vocalization, and compulsive-repetitive behav-
iors (Figure 3). At the cellular level, Shank3
mutant mice display a pronounced perturba-
tion in synaptic function, more specifically,
a decrease in glutamatergic signaling, loss of
synaptic strength, or altered synaptic plasticity
(Bangash et al. 2011, Bozdagi et al. 2010, Peca
et al. 2011, Wang et al. 2011). From these
new studies on Shank3 mutant mice, one study
described a Shank3 genetic lesion that led to a
gain-of-function effect through the expression
of a form of Shank3 lacking the C-terminal re-
gion (Bangash et al. 2011). This mutant protein
promotes the recruitment of endogenous full-
length Shank3 isoforms and NMDAR subunits
for degradation through the proteosomal path-
way. This study offered the first insights into a
potential mechanistic role played by a discrete
set of Shank3 mutations relevant to Shank3 mu-
tations in autism (Bangash et al. 2011, Durand
et al. 2007). Interestingly, Shank3 and its close
interacting partner SAPAP are established tar-

gets for ubiquitination at the PSD in response
to changing activity levels (Ehlers 2003, Hung
et al. 2010). When taking into account that both
Shank3 and SAPAP3 mRNA are among the
rare transcripts found in dendrites (Peca et al.
2011, Welch et al. 2004), it is tempting to spec-
ulate on the importance of rapid bidirectional
control of dendritic translation and synap-
tic localization of both Shank3 and SAPAP3.
Moreover, Shank3 and SAPAP3 are both highly
expressed in striatal tissue, and the disruption
of either gene leads to defects in cortico-striatal
synaptic function; thus, these molecular part-
ners may functionally converge on a common
pathway in the brain. Dysfunction of this brain
circuitry seems to be crucial in the expression
and/or gating of compulsive-repetitive behav-
iors that represent a core feature of both ASDs
and obsessive-compulsive spectrum disorder
(Peca et al. 2011, Welch et al. 2007).

Human Molecular Genetics
Data on Shanks

Phelan-McDermid syndrome (PMS) is a
genetic condition characterized in part by

62 Ting · Peça · Feng

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
12

.3
5:

49
-7

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

6/
29

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



NE35CH03-Ting ARI 12 May 2012 21:39

delayed or absence of speech and language and
a high incidence of autistic behaviors in afflicted
children (Phelan et al. 2001). A genetic lesion in
the terminal region of human chromosome 22
has been identified in PMS, and in most 22q13
microdeletions a large number of genes, in-
cluding Shank3, are ablated. However, from the
multiple genes disrupted in PMS patients, only
Shank3 has been strongly associated with the
major neurological complications arising from
22q13 chromosomal aberrations (Bonaglia et al.
2011, Delahaye et al. 2009, Wilson et al. 2003).
Also in support of this view, minimal deletions
in 22q13.33 that still affect Shank3 promote the
full range of PMS symptomatology, whereas
ring chromosome aberrations or 22q13.33
microdeletions that leave Shank3 intact do
not ( Jeffries et al. 2005, Misceo et al. 2011).
Importantly, mutations in Shank3, including
microdeletions, nonsense mutations, and recur-
rent break points, are found in ASD patients di-
agnosed outside of PMS, thereby strongly sug-
gesting that a monogenic form of ASDs can be
triggered by perturbing this postsynaptic pro-
tein (Durand et al. 2007, Gauthier et al. 2009,
Moessner et al. 2007). Finally, Shank3 has also
been linked with a potential role in the devel-
opment of schizophrenia (Gauthier et al. 2010).

More recently, CNVs have been proposed
to account for a substantial percentage of
genetic lesions in nonsyndromic ASD cases
(Beaudet 2007, Sebat et al. 2007). CNVs
affecting Shank2 and SAPAP2 have also been
identified in patients affected with ASDs or
mental retardation, again suggesting a role for
these families of genes in psychiatric disorders
(Berkel et al. 2010, Pinto et al. 2010).

SUMMARY

Deciphering Structural and Functional
Roles of Postsynaptic Scaffolding
Proteins at the Synapse

The recent findings we highlight stress the
dynamic and evolving view of the PSD, with
emphasis here on the roles of the postsy-
naptic scaffolding proteins in this specialized

structure. By harnessing a multitude of bio-
chemical, molecular, electrophysiological, and
behavioral methodologies, researchers in this
field are methodically unraveling the precise
functions subserved by individual scaffolding
proteins. The application of mouse genetic
engineering in recent years has especially facil-
itated major advancements in our knowledge
of the in vivo functions carried out by the
major scaffolding protein families through
analysis of both loss-of-function and gain-
of-function mutations. These mutant mice
have collectively provided convincing confir-
mation of physiological functions previously
demonstrated only in vitro and have led to
new discoveries that have allowed us to refine
and/or reinterpret the existing models (e.g.,
defining the functional redundancy among
PSD95 family proteins; uncovering a putative
calcium buffering role of Homers in neuronal
and non-neuronal tissue). Despite the overt
complexity of the postsynaptic compartment
at excitatory synapses, the once seemingly
insurmountable task of a complete molecular-
genetic functional dissection of the major PSD
components is emphatically feasible.

Integration of Human and Mouse
Genetics to Elucidate Gene Function
in Health and Disease

It has sparked great interest that a growing
number of genetically modified mice harboring
mutations in distinct postsynaptic scaffolding
proteins exhibit behavioral phenotypes that
are reminiscent of specific human psychiatric
disorders. In some instances the discoveries
were fortuitous, whereas in other cases the
mutant mice were created with foreknowledge
of the gene having been implicated in disease
susceptibility or causality. Although no animal
model can fully recapitulate all the core features
of a particular complex human psychiatric dis-
order, each animal model may express a subset
of core features that is easily quantifiable and
amenable to detailed mechanistic investigation
at a level that is not possible in humans. Thus,
detailed multilevel analysis of the functional
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consequences of gene mutations in animal mod-
els is indispensable for searching out gene func-
tion in both health and disease, as exemplified
here by the work concerning the in vivo func-
tional roles of postsynaptic scaffolding proteins.

In considering the recent work on SAPAP3
null mice and Shank3 mutant mice, the
proposed relevance of the mutant mouse
phenotypes to a human disorder has been
strengthened by complementary human genet-
ics data linking variations in the gene (or regions
harboring the gene of interest) to the same
disorder or related disorders in humans (e.g.,
SAPAP3 and obsessive-compulsive spectrum
disorders, Shank3 and autism-spectrum disor-
ders). Although such findings can be viewed
as strongly supportive, it is crucial to point
out that evidence from human genetics studies
supporting the association of a particular gene
variation with a human psychiatric disorder
does not establish causality of that gene, but

instead establishes the overrepresentation of
that particular gene variation with the diseased
state. Genetic-association studies in psychiatric
disorders leave open the mechanism(s) by
which specific genetic variations perturb gene
function and the impact of these alterations
on neuronal and brain circuitry function. As
a concluding note, it is valuable to expand the
view beyond the relatively narrow scope of
postsynaptic scaffolding proteins, as a flurry of
recent human genetics studies have implicated
a broad spectrum of genes related to synaptic
function as contributing to susceptibility in
human mental health disorders (Gilman et al.
2011, Gratacos et al. 2009, Hamdan et al.
2011, Piton et al. 2011, Voineagu et al. 2011).
Deciphering causal genetic variants will un-
doubtedly be a monumental task that will keep
our attention firmly focused on the remarkable
structural and functional complexity of the
synapse.

FUTURE ISSUES

1. Human genetics studies are identifying disease-linked genetic variants at an overwhelm-
ing pace. Defining which genetic variants are benign and which are pathological repre-
sents a major goal in translational neuroscience.

2. Engineering genetically modified mice with disease-relevant mutations will greatly fa-
cilitate this effort.

3. In creating new genetic mouse models, researchers should consider a variety of strategies,
including but not limited to the following: null alleles, knock-in alleles, alleles with
specific gene CNVs, and chromosomal aberrations. The most appropriate design will
depend on the unique goals of each study.

4. Delineating cell-type-specific functions of PSD scaffolding proteins in vivo using molec-
ular genetics tools will be of exceptional value to dissecting the circuitry basis of behavior.
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