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ABSTRACT

Obsessive-compulsive disorder (OCD) affects 2%-3% of the population worldwide and can cause significant
distress and disability. Substantial challenges remain in the field of OCD research and therapeutics. Approved
interventions alleviate symptoms only partially, with 30%—-40% of patients being resistant to treatment. Although the
etiology of OCD is still unknown, research evidence points toward the involvement of cortico-striato-thalamocortical
circuitry. This review focuses on the most recent behavioral, genetics, and neurophysiologic findings from animal
models of OCD. Based on evidence from these models and parallels with human studies, we discuss the circuit
hyperactivity hypothesis for OCD, a potential circuitry dysfunction of action termination, and the involvement of
candidate genes. Adding a more biologically valid framework to OCD will help researchers define and test new
hypotheses and facilitate the development of targeted therapies based on disease-specific mechanisms.
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Neuropsychiatric disorders encompass a wide range of dis-
eases that manifest as one or many altered behaviors,
including, but not limited to, self-injurious behavior, impaired
social-emotional communication, and cognitive deficits.
Because of the lack of biomarkers and overlapping behavioral
symptoms, diagnosis of neuropsychiatric disorders some-
times relies on exclusion of other underlying conditions.

Obsessive-compulsive disorder (OCD) has a 2%-3%
worldwide prevalence (1,2) and is characterized by excessive
preoccupations (obsessions) associated with specific rituals
(compulsions). Current treatments to alleviate symptoms
include cognitive behavioral therapy and selective serotonin
reuptake inhibitors (3,4). In cases in which patients do not
respond to cognitive behavioral therapy or medication or both,
other interventions have been used, such as deep brain
stimulation (5-7). Because abnormalities in the glutamatergic
system also have been proposed in the pathology of OCD,
some N-methyl-D-aspartate receptor antagonists including
ketamine and memantine are being tested as possible thera-
pies (4,8).

Previously considered under the spectrum of anxiety dis-
orders, OCD is now categorized in the recently revised DSM-5
with other obsessive-compulsive-related disorders, including
trichotillomania, body dysmorphic disorder, skin picking dis-
order, and hoarding disorder. The reclassification is based on
behavioral similarities and common features of these disorders
—obsessive preoccupations and repetitive actions. Such
categorization is thought to help guide diagnostic criteria
and ensure consistency among health care providers. How-
ever, a more “biologically valid framework” for mental disor-
ders has been proposed by the U.S. National Institute of
Mental Health. This new research framework, designated

Research Domain Criteria, aspires to emphasize mental dis-
orders as biological constructs that span specific domains of
behavior, emotion, and cognition (e.g., social interactions,
mood) that can co-occur in a range from normal to extreme.
Future goals include using brain mapping, genetic studies, and
modeling of cognitive aspects of mental disorders to help
understand and target therapeutically the biological bases of
complex neuropsychiatric diseases, including OCD. Animal
models can contribute to this dimensional approach by
providing means to test biological causality. This review
discusses several areas of research including neurophysiol-
ogy, behavior, and genetics in animal models of compulsive/
repetitive behavior that can serve as foundations for under-
standing the basic biology of such behavior.

NEUROPHYSIOLOGY OF OCD—INSIGHTS FROM
ANIMAL MODELS

Cortico-striato-thalamocortical Circuitry

One of the most replicated findings in human OCD studies is
the involvement of cortico-striato-thalamocortical circuitry
(CSTC) (9,10). Human striatum is anatomically subdivided
by the internal capsule into caudate nucleus and putamen.
Caudate nucleus receives mostly excitatory inputs from
orbitofrontal, prefrontal, and cingulate cortex areas, whereas
putamen receives most of its cortical inputs from sensor-
imotor areas (11,12). Increased activity in the anterior cingu-
late/caudal medial prefrontal cortex, orbitofrontal cortex
(OFC), and caudate region (areas implicated in some aspects
of executive function and evaluation of significance (12)) has
been reported in OCD (13). How can we connect these
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Figure 1. Simplified neuroanatomic models of corticostriatal circuitry within the human (top) and mouse (bottom) brain. Human motor cortex is represented
by premotor and sensorimotor cortical regions that mainly project to the posterolateral putamen (11). Mouse motor cortex is represented by somatosensory
and motor cortex that mainly project to the dorsolateral striatum region (16). Human associative cortex, represented by the dorsolateral prefrontal cortex and
lateral orbitofrontal cortex, projects to the caudate and anteromedial portion of the putamen (11). Mouse associative cortex is represented by dorsal prelimbic
and parietal association cortices that mainly project to the dorsomedial striatum region (15). Human limbic cortex, represented by the paralimbic and limbic
cortices (including entorhinal cortex [area 28], perirhinal cortex [area 35], medial orbitofrontal cortex [area 11], and anterior cingulate cortex [area 24]) (11,101),
projects to the ventral striatum (ventral region of the caudate nucleus and putamen, including nucleus accumbens). Mouse limbic cortex is represented by
orbitofrontal cortex and prefrontal cortex (ventral prelimbic, infralimbic, and cingulate cortices) that mainly project to the ventromedial striatum region
(including nucleus accumbens) (15,16). Human associative and limbic circuits are implicated in stimuli significance and might generate obsessive thoughts
that cause anxiety. Interconnections with motor cortex and basal ganglia circuits lead to execution of compulsive actions. Based on the perceived outcome,
actions can be reinforced and propagated through this repetitive loop. All regions depicted are representative and are not intended to provide accurate
anatomic locations. CPu, caudate putamen; IL, infralimbic; mPFC, medial prefrontal cortex; PL, prelimbic.

findings with behavioral manifestations in OCD? A major
advantage of studying animal models is the ability to
manipulate neural circuits directly and test behavioral out-
comes. It is important to define neuroanatomic parallels
between CSTC structures in humans and mice so that
their (dys)function and relevance to OCD can be tested
(Figure 1).

8

Based on behavioral studies in mice, a loose definition of
limbic, associative, and motor striatal territories can be
adopted as well as definition of their respective sources of
cortical inputs (14,15). Mouse medial prefrontal cortex seems
to be organized in a dorsal-ventral gradient of connectivity
such that dorsal-prelimbic input projects to dorsomedial
regions of striatum (DMS; associative striatum), and ventral-
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prelimbic input projects mainly to ventral striatum (limbic
striatum) (16). These ventromedial striatum regions are con-
sidered to be caudate-like in rodents (15,17,18). Finally, motor
cortex projects mainly to the mouse dorsolateral striatum
(DLS), a region considered similar to the primate putamen
(15,17). However, despite some functional resemblance, there
are important species-specific differences, with mice lacking
certain neuroanatomic connectivity possessed by primates
(14-17,19,20).

Similar to the connectivity patterns observed between
cortex and striatum, it is believed that downstream basal
ganglia territories are equally well organized into associative,
limbic, and sensorimotor regions. Evidence for this cognitive,
emotional, and motor organization of basal ganglia has been
clarified through groundbreaking studies in monkeys (21,22).
Bicuculline injections into limbic regions of globus pallidus
(GP) can induce stereotypies, whereas injections into asso-
ciative regions can lead to attention deficit/hyperactivity.
Abnormal movements are not observed unless injections
occur within sensorimotor regions of GP, suggesting a partic-
ular role for associative and limbic territories in the etiology of
compulsive behaviors (21).

In rats, DLS is known to be required for grooming syntax
(23-26), a normal physiologic behavior that appears hyper-
active in some OCD mouse models with self-injurious over-
grooming (27,28). Can dysfunction of the rodent putamen-like
structure, DLS, and seemingly purposeless repetitive routines/
stereotypies be related to caudate dysfunction and compul-
sive behaviors in human OCD? Neurophysiology and behavior
studies suggest that DLS and DMS regions support an
important behavioral transition in rodents: intentional goal-
directed actions, encoded by DMS, that, on repetition,
become habitual automated responses, encoded by DLS
(16-18,29-33). A dynamic competition is thought to occur
between these two striatal regions during habit acquisition.
DMS activation likely guides the expression of behaviors as
they transform into habits, but once this DMS activity
decreases, DLS circuits assume control over behaviors (34).
Evidence from DMS lesioned mice that show tendencies for
action generalization strategies (i.e., habitual responses) indi-
cating that DLS guides behavioral performance when DMS
function is compromised (29). This evidence might help to
explain results from a clinical study in which a deficit in goal-
directed control and an ovetrreliance on habits were observed
in patients with OCD (35). Dysfunctional associative circuitry
could be affecting the performance of related sensorimotor
circuits.

Striatum Microcircuitry

Medium spiny neurons (MSNs) are the major cell type within
the striatum and can be classified into two main subtypes:
striatonigral (dopamine 1 receptor—positive direct-pathway
cells; project to substantia nigra pars reticulata) and striato-
pallidal (dopamine 2 receptor—positive indirect-pathway cells;
project to GP) (36,37). The classic model of basal ganglia
motor output function postulates that direct-pathway activa-
tion facilitates movement and indirect-pathway activation
suppresses movement (38-41). Validity of this model was
called into question through more recent mouse studies

showing concurrent activation of both pathways during action
initiation (42), whereas other mouse studies substantiated the
classic model (43). One possible unifying explanation for these
disparate results is that activation of both pathways could be
important for specific action selection and initiation: Direct-
pathway cells could be activated to promote a specifically
intended motor program, whereas indirect-pathway cells
could be concomitantly activated to inhibit specific competing
motor programs. In this scenario, one could imagine that
nonspecific activation of all indirect-pathway cells could lead
to inhibition of all motor programs, as in bradykinesia, whereas
overall ablation or silencing of all indirect-pathway cells could
lead to hyperkinesia.

In addition to MSNSs, the striatum contains three main
classes of interneurons that regulate striatal function: fast-
spiking (FS) interneurons that are cytochemically parvalbumin-
positive and project to both MSN types but are more likely to
target dopamine 1 receptor—positive cells; low-threshold-
spiking interneurons; and choline acetyltransferase—positive
interneurons (Figure 2) (36,37,44,45). Despite their relative
sparsity, these interneurons can strongly modulate MSNs,
greatly influencing final output of the striatum (46). In patients
with Tourette’s syndrome, a disorder often comorbid with
OCD, histology of postmortem striatal tissues revealed
decreased density of parvalbumin-positive and choline acetyl-
transferase—positive interneurons in caudate and putamen
regions (47,48). A potential bridge between Tourette’s syn-
drome, OCD, and striatal interneuron dysfunction is also
suggested by a study, summarized subsequently, in which
increased MSN activity and lower striatal parvalbumin-positive
cell density were observed in a mouse model of OCD (49).
Although interneuron dysfunction is a less commonly explored
hypothesis in animal models of OCD, it is possible that
defective interneuron activity might result in or contribute to
abnormal striatum activation associated with pathology. In
future studies, it will be important to define exactly how these
interneuron populations modulate striatum output and how, if
at all, they are relevant to OCD.

Hyperactive Circuitry in OCD

Among the various tools that have become available to study
neural circuits, one holds great promise: optogenetics (50,51).
Using this strategy, a study directly tested the CSTC hyper-
activity hypothesis of OCD (52). The authors expressed and
activated ChR2 in mouse medial OFC excitatory neurons that
project to ventromedial striatum. Repeated direct hyperacti-
vation of these cells over 5 consecutive days led to a
progressive increase in repetitive grooming. However, acute
stimulation was insufficient to induce increased grooming
patterns, suggesting the need for a reinforcing circuitry loop
in repetitive OCD-like behaviors.

Another finding in support of the CSTC hyperactivity
hypothesis is derived from the Slitrk5-knockout (KO) mouse
model. Staining for FosB, a cellular marker of sustained
neuronal activity (53), showed its levels to be increased
specifically at OFC, suggesting hyperactivity of this brain
region. These results may be particularly relevant to under-
standing the increased metabolic activity observed in OFC and
caudate nucleus of patients with OCD (54).
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Figure 2. Representation of intrastriatal microcircuitry. Corticostriatal and thalamostriatal excitatory axons target the dendritic spines of medium spiny
neurons (MSNs) and dendritic shafts and soma of striatal interneurons. Fast-spiking (FS) interneurons receive more cortical contacts and are more responsive
to cortical inputs than MSNs (102,103); FS interneurons synapse proximally onto both MSN types (104) with a bias toward direct-pathway dopamine 1
receptor-positive MSNs (45); FS interneurons also synapse with other FS cells, but not low-threshold spiking neurons or TANs (45). Low-threshold spiking
interneurons send sparse inhibitory projections onto MSN dendrites (45,105,106). TANs send inputs to dendritic spines, shafts, and somata of MSNs (107)
and provide powerful excitatory cholinergic input to FS interneurons (108,109). Dopamine 1 receptor-positive MSNs have more elaborate dendritic arbors
(110), and their axons project to substantia nigra pars reticulata (37) (not represented); this direct pathway promotes the execution of intended motor
programs (42). Dopamine 2 receptor-positive MSNs project to globus pallidus (37) (not represented); this indirect pathway may inhibit the execution of
competing motor programs (42). G protein—coupled receptors are depicted with their associated G protein: Gs (pink), Gi (brown), Gq (blue). A2A, A2A
adenosine receptor; ChAT, choline acetyltransferase; D, dopamine receptors; Dyn, dynorphin; Enk, enkephalin; LTS, low-threshold spiking; M, muscarinic
acetylcholine receptors; nAChR, ionotropic nicotinic acetylcholine receptor; NOS, nitric oxide synthase; NPY, neuropeptide Y; PV, parvalbumin; SOM,
somatostatin; SP, substance P; TANS, tonically active neurons.

A recent study by Rothwell et al. (55) showed that imbal-
anced basal ganglia activity can clearly influence the formation
of repetitive motor routines. In this study, the authors showed
that disinhibition of direct-pathway MSNs in ventral striatum
can enhance the formation of repetitive motor routines,

specific brain areas, facilitating their reactivation by subse-
quent stimuli.

Dysfunction of Termination (Stop Signal) in OCD?

observed as increased rotarod learning. Although direct-
pathway MSNs in dorsal striatum are important for overall
motor coordination, the observed phenotype is independent of
cerebellum or dorsal striatum. Such studies support the idea
that different symptom dimensions might be associated with
distinct neural substrates (56). Proper balance between direct-
pathway and indirect-pathway activity and proper dynamic
interaction between different striatal subregions seem crucial
for normal behavior. Repetitive behaviors observed in OCD
may arise from brief but repeated bursts of neuronal activity in

Hyperactivity of CSTC circuitry in OCD and consequent
propagation of positive-feedback loops could be due to
augmented sensitivity to initial triggering stimuli (too much
start signal) or to deficiency in motivation to break the initiated
behavioral ritual (too little stop signal). More recent work tried
to address this question by studying security-related behav-
iors that arise from exposure to contamination cues (57). The
results indicated that the cause of patients’ symptoms relied
on dysfunctional termination (stop signal) rather than dysfunc-
tional activation (start signal). The root cause of this improper
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action termination may be weakened “motivational satiety.” In
line with this hypothesis, a report by Burguiere et al. (49)
corroborated an insufficiency of the stop signal and reinforced
the importance of the OFC-striatal pathway in the genesis of
compulsive behaviors. Electrophysiologic recordings obtained
over a long-term period in Sapap3-KO mice, an established
model of OCD-like behaviors (see later), revealed abnormally
high spontaneous MSN activity in the centromedial striatum, in
further support of the hyperexcitability hypothesis. These mice
not only showed deficits in adaptive grooming response
during a conditioned grooming task (tone-delay-water) but
also showed impaired striatal physiology, in which MSNs were
incapable of adapting and refining their activity during task
shaping. These findings point toward acquired maladaptive
behavior to an initially neutral stimulus. Sapap3-KO mice
further showed reduced striatal FS interneuron density, sug-
gesting that deficient inhibition within striatum might contrib-
ute to MSN hyperactivity (58). Optogenetic stimulation of
lateral OFC somata or afferent terminals in the striatum can
successfully alleviate conditioned overgrooming as well as
naturally occurring compulsive grooming in Sapap3-KO mice
(49). In vivo recording data demonstrated that stimulation of
the lateral OFC-striatal pathway increased FS-MSN inhibitory
efficacy and helped to restore behavioral inhibition, presum-
ably through increasing striatal inhibitory tone. Given that FS
interneurons synapse onto both MSN subtypes but are more
likely to target direct-pathway MSNs (45), it is tempting to
speculate that the altered feedforward inhibition of striatal
MSNs observed in Sapap3-KO mice more profoundly affects
the direct pathway to lead to disinhibition of specific motor
compulsions.

Although the aforementioned animal studies by Ahmari
et al. (52) and Burguiére et al. (49) might at first appear
discrepant—medial OFC stimulation increases grooming,
while lateral OFC stimulation reduces grooming—it is critical
to note that results were derived from different cell popula-
tions. Both studies implicated OFC dysregulation in compul-
sive behaviors and suggested that lateral OFC and medial
OFC might be playing different roles in OCD, as hypothesized
earlier by Milad and Rauch (59).

BEHAVIORAL STUDIES IN OCD ANIMAL MODELS

To evaluate OCD-like behaviors in animal models, specific
behavioral paradigms have been developed in recent decades
to assess multiple factors, such as anxiety and compulsivity.
Tests of anxiety include open field and elevated zero or plus
mazes, where patterns of exploratory activity can be evaluated
by quantifying time spent in typically anxiogenic open areas
versus time spent in perimeter or protected areas. Despite the
relevance of anxiety in OCD, anxiety is an equally relevant trait
to other non-OCD spectrum disorders. Similarly, OCD itself
shares important links with other anxiety disorders, although
this is not true for all other OCD spectrum disorders (60).
Additional behavioral paradigms focus on compulsive behav-
iors, considering them as closer translational manifestations of
the human condition. Time spent in repetitive tasks, such as
nonnutritive chewing, grooming, or shifting/digging in bedding
as in the marble burying test, can be simply observed. Other,
more complex tests involve learned tasks in which the

presence of compulsive traits can be tested under specific
conditioning paradigms. The delayed reinforcement task helps
to dissociate impulsive choices from the motor impulsivity
observed in OCD. In addition, reversal learning tasks or serial
reaction time tasks, in which duration, frequency, and perse-
verance of choices are assessed, can distinguish between
impulsive and compulsive responses (14,61).

Animal models of neuropsychiatric disorders should exhibit
at least one of the following characteristics: atypical behaviors
that resemble human symptoms (face validity); shared bio-
logical grounds with human conditions, such as mutation of a
specific gene (construct validity); or successful response to
the same therapeutic agents prescribed to patients, allowing
outcome predictability (predictive validity). Several animal
models exhibit OCD-like behaviors and have been useful in
underpinning distinct aspects of the neurobiology of OCD. The
first genetic mouse model presenting face, construct, and
predictive validity for OCD was published in 2007 (28). These
mice lack SAPAPS, a scaffolding protein normally enriched at
corticostriatal glutamatergic synapses. Besides impaired cor-
ticostriatal transmission, these mice display self-injurious
grooming and increased anxiety as assessed by the open
field, elevated zero maze, and dark-light emergence tests.
Anxiety and compulsive grooming can be partially alleviated
by fluoxetine treatment. A key finding is that restoring SAPAP3
expression in the striatum alone can rescue self-injurious
grooming and corticostriatal transmission, further emphasizing
the role of the striatum in compulsive behaviors. A more recent
study in this OCD mouse model suggested exaggerated
stimulus-response habit formation. When mice are condi-
tioned to groom in response to delivery of a water drop to
the forehead preceded by a tone, Sapap3-KO mice promptly
groom in response to the tone and are unable to reshape this
acquired behavior, even when delivery of the water drop is
subsequently omitted. This behavior contrasts sharply with
wild-type mice that respond primarily to the water drop rather
than the tone, suggesting an abnormal adaptive process to
conditioned stimuli in OCD.

Other interesting findings have emerged from the deletion
of the Slitrk5 gene in mice. SLITRK family proteins are involved
in neurite outgrowth (62), and absence of SLITRKS5 protein in
mice leads to increased anxiety, as assessed by elevated plus
maze and open field tests, and compulsivity, as assessed by
increased marble burying behavior and self-injurious grooming
(27). Long-term fluoxetine treatment can alleviate this pheno-
type. Slitrk5-KO mice provide researchers with another prom-
ising mouse model for studying OCD-like behaviors.

GENETIC STUDIES OF OCD—INSIGHTS FROM
HUMAN PATIENTS AND ANIMAL MODELS

Common acts carried out by patients with OCD involve
actions such as checking, washing, and ordering. The fact
that these themes are not random and occur consistently in
patients across distinct sociocultural backgrounds worldwide
raises the possibility of common genetic bases (63,64). Twin
studies of OCD also support this prediction, yielding the
strongest evidence for a genetic contribution in OCD. An
extensive review published by van Grootheest et al. (65) using
a dimensional approach for twin studies concluded that OCD
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symptoms are highly heritable, ranging from 45%-65% in
childhood-onset OCD and 27%-47% in adult-onset OCD.

Sic1a1/Eaac1

The first genome-wide linkage study for OCD was carried out
in 2002 to identify susceptible chromosomal regions for early-
onset OCD (66). The results suggested a link to chromosomal
region 9p24 with the closest gene being Sic1a (solute carrier
family 1, member 1), a glutamate transporter also known as
Eaac1 (67). Since then, several linkage studies have supported
OCD association with this genomic region, but with modest
cross-validation, as different studies support different single
nucleotide polymorphisms associated with the disease (68—
70). An Eaac1-KO mouse was first generated and published in
1997, albeit with apparently nominal relevance to the study of
OCD neurobiology and behavior (71). Eaac1-KO mice develop
dicarboxylic aminoaciduria and show reduced spontaneous
locomotion in the open field. Later studies reported reduced
neuronal glutathione levels and age-dependent neurodegen-
eration, evidenced by cortical thinning and ventricular enlarge-
ment (72,73). Despite the absence of a strong OCD-like
phenotype in Eaac1-KO mice, several studies implicated the
human EAACT gene in at least some cases of OCD (68,74). It
is plausible that Eaac1 functional deficits are not well reca-
pitulated in mice or that this gene is involved rather in poly-
genic susceptibility to OCD by interacting with other factors.

Sapap and Slitrk

An effort has been made to search for common single
nucleotide polymorphisms predisposing individuals to OCD.
More than 20 research groups have collaborated to accom-
plish the first genome-wide association study for human OCD
(75). Results from this study suggested the involvement of two
single nucleotide polymorphisms located within the Digap1
gene that encodes the SAPAP1 protein. Previously, another
member from the same family of proteins, SAPAP3, had been
implicated in the Sapap3-KO mouse model that exhibits OCD-
like behavior (see earlier) (28,76-78). Smaller association
studies supported a role for SAPAP3 in human trichotillomania
and OCD (79-81), reinforcing the idea that proteins from this
family might play a role in OCD-related behaviors.

Another group, the OCD Collaborative Genetics Association
Study (82), found an association of a marker on chromosome 9
near the PTPRD gene, although no genome-wide significance
was achieved. The PTPRD protein seems to play a role in
regulating development of inhibitory synapses through its
interaction with SLITRK3. SLITRKs (SLITRK1 through SLITRK®6)
are a relatively recently discovered family of proteins (62) that
have emerged as candidate genes in neuropsychiatric disorders
(83). Human genetic studies suggested an association link
between SLITRK1 and Tourette’s syndrome, a neuropsychiatric
disorder characterized by motor and vocal tics (84). Slitrk1-KO
mice display increased anxiety and noradrenergic abnormalities
(85), consistent with reports of increased norepinephrine levels
in cerebrospinal fluid of patients with Tourette’s syndrome (86).
The hypothesis of SLITRK1 involvement in Tourette’s syndrome
and the fact that SLITRKs are highly expressed in mammalian
central nervous system (87) motivated the generation of a
Slitrk5-KO mouse to explore possible phenotypes (27). As

Animal Models of OCD

described earlier in this review, Slitrk5-KO mice display OCD-
like behaviors and impaired corticostriatal circuitry. Given that
Slitrk5-KO mice and Sapap3-KO mice display impaired cortico-
striatal transmission and OCD-like behaviors that are respon-
sive to treatment with fluoxetine, one of the pharmacologic
agents used in patients with OCD, it would be interesting to
address whether these mutations of these genes lead to
common defects in molecular pathway or circuitry function.

Hoxb8

Another hypothesis concerning OCD etiology comes from
genetic deletion of the Hoxb8 gene in mice, which suggests
a link between the immune system and OCD expression (88).
This transcription factor is detected in the adult brain, being
expressed in bone marrow—-derived microglia cells that migrate
into the OFC, cingulate cortex, limbic system, and other
regions of the brain during the postnatal period (88,89).
Hoxb8-KO mice display self-injurious and cage-mate exces-
sive grooming that can be rescued by bone marrow trans-
plantation from wild-type mice. Although this link between the
immune system and OCD might seem puzzling at first, it was
previously shown that microglia play roles in regulating neuro-
nal cell death and in modulating neural networks (90,91). A
subset of children with OCD can experience worsening of
symptoms after streptococcal infection. One brain region that
is affected in pediatric autoimmune neuropsychiatric disorders
associated with streptococcal infections is the basal ganglia
(immunobiology of OCD and pediatric autoimmune neuro-
psychiatric disorders associated with streptococcal infections
reviewed by Murphy et al. (92)). Although expressed brain-
wide in the mouse, Hoxb8 is predominantly found in adult
brainstem, olfactory bulb, cortex and striatum (88,89), the
latter two regions being highly implicated in OCD, as dis-
cussed earlier.

Although Hoxb8-KO mice, Sapap3-KO mice, and Slitrk5-
KO mice have grooming phenotypes that are unique in their
biological origins, all genes share an enriched corticostriatal
expression. In regard to human OCD, these mice studies
suggest that a commonly shared pathologic behavior, com-
pulsivity, may arise from different causal insults that impact
the same brain circuits.

Other Genes

Currently approved treatments to alleviate OCD symptoms
include medications that modulate the serotoninergic system.
Although the exact mechanisms are unknown, it is thought
that 5-hydroxytryptamine 2C serotonin receptor agonism
might contribute to therapeutic benefits in OCD (93). Genetic
deletion of 5-hydroxytryptamine 2C receptor in mice led to
enhanced sensitivity to induced motor stereotypy and
compulsive-like behaviors, such as nonnutritive chewing and
increased head dipping (94-97), supporting serotoninergic
involvement in compulsivity. In contrast to other OCD models,
these mice showed less anxiety than wild-type mice in open
field, elevated plus maze, novel object, and mirrored chamber
tests, suggesting that compulsivity and anxiety symptoms
might be dissociable.

Another useful method to look for candidate genes involved
in OCD, besides hypothesis-driven gene deletion in mice, is
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Table 1. Candidate Genes From Animal Models With OCD-like Behaviors
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Gene Genetic Evidence Behavioral Phenotype Neurophysiology Notes References
Hoxb8  Global Hoxb8-KO mice Self-injurious grooming Hoxb8 expressed in bone marrow— WT bone marrow (88,89)
with relevant phenotype derived microglia that migrate into transplantation rescues

brain OFC, cingulate cortex, and basal excessive grooming
ganglia regions
Conditional-KO mice Cage mate overgrooming KO bone marrow
(hematopoietic cells) transplantation induces
exhibit global KO excessive grooming in
phenotype WT
Sapap3 Global Sapap3-KO mice Self-injurious grooming Sapap3 mainly expressed in neocortex,  Striatum infection using (28,49,75,78)
with strong phenotype striatum, hippocampus, and thalamus lentivirus-Sapap3 rescues
self-injurious grooming
and fEPSP
Two SNPs located in Increased anxiety (open field Impaired corticostriatal function (reduced Fluoxetine treatment
Sapap1 (family member) test, elevated zero maze, fEPSP, mEPSC and AMPA/NMDA partially alleviates
found in human OCD and dark-light emergence) ratio; increased silent synapses and compulsive grooming and
GWAS study eCB-LTD) anxiety
Deficit in adaptive grooming Increased spontaneous MSN firing
response during activity in centromedial striatum
conditioning task
Reduced interneuron PV number in
centromedial striatum
Slitrk5  Global Slitrk5-KO mice with Self-injurious grooming Slitrk5 mainly expressed in neocortex, Fluoxetine alleviates 27)
strong phenotype striatum, and hippocampus overgrooming
Increased anxiety (open field Impaired corticostriatal function (reduced
test, elevated plus maze) fEPSP)
Compulsive-like behavior OFC hyperactivity (increased FosB
(marble burying test) staining levels)
Decreased striatal volume and decreased
MSN dendritic arbor complexity
Sic1a1l/ Human OCD genetic Human OCD Sic1al is highly expressed in human Age-dependent cortical (67,71-73)
Eaac1 studies cortex, striatum, and thalamus thinning and ventricular
enlargement in Eaac1-null
mice
Eaac1-null mice show Eaac1-KO mice show Dicarboxylic aminoaciduria
modest phenotype cognitive and motivational
impairment at old age
Reduced spontaneous
locomotion in open field
test
Cdh2 Dog OCD small GWAS Canine OCD (incessant tail  ND in dogs Cdh2-KO mice die during (98-100)
chasing, relentless paw early embryonic stages
chewing)
Htarc Global 5-HT,c-R-KO mice  Nonnutritive chewing Decreased corticotropin hormone release Midlife obesity (due to (94,97)

show compulsive
phenotype

Increased head-dipping

Reduced anxiety (open field
test, elevated plus maze,
novel object, mirrored
chamber)

from extended amygdala in response
to anxiogenic stimuli

hyperphagia)

Prone to death from
spontaneous seizures

Altered sleep homeostasis

Genes listed in this table have emerged from human sequencing studies or animal single-gene knockout studies that resulted in OCD-like

phenotypes.

AMPA/NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate; 5-HT,c-R, 5-hydroxytryptamine 2C recep-
tor; eCB-LTD, endocannabinoid-mediated long-term depression; fEPSP, field excitatory postsynaptic potentials; GWAS, genome-wide association
study; KO, knockout; mEPSC, miniature excitatory postsynaptic currents; MSN, medium spiny neuron; ND, not defined; OCD, obsessive-
compulsive disorder; OFC, orbitofrontal cortex; PV, parvalbumin; SNP, single nucleotide polymorphism; WT, wild-type.

genomic sequencing from animals displaying spontaneously
occurring pathologic behaviors. Some dog breeds display
OCD-like behaviors, including incessant tail chasing and
relentless paw chewing. Given that the dog genome is less
complex than the human genome, the first canine OCD
genome-wide association study was carried out recently,
which identified four synaptic genes with case-only variations

Biological Psychiatry January 1, 2016; 79:7-16 www.sobp.org/journal

(Cdh2, Ctnna2, Atxn1, Pgcp) (98). Previous studies in mice
showed that Cdh2 gene disruption, although embryonically
lethal, caused synaptic dysfunction in cultured neurons
(99,100).

Together, the ever-expanding genetic studies of human,
mouse, and dog seem to converge toward CSTC synaptic
dysfunction in OCD pathology (Table 1). Although animal
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models never can fully recapitulate the human OCD spectrum
because of species-specific limitations, they do allow us to
study precisely neurobiological mechanisms of gene-linked
phenotypes by limiting some of the many confounds inherent
to studies of humans, including variability in one’s environment
and genetic background.

FUTURE PERSPECTIVES AND CONCLUSIONS

Much is still to be unraveled in terms of the detailed neuro-
biology of CSTC circuits in OCD: What neuromodulators are
imbalanced? Are OCD compulsions dissociable from obses-
sions or anxiety in general? What specific ensemble of
neurons encode for motor programs of compulsions? What
brain areas initiate the obsession-compulsion process?

Human functional imaging data seem to suggest hyper-
activity in OFC of patients with OCD. It is possible that this
area could be important for generating specific thoughts that
in a person without OCD are easily resolved by performing a
particular act, such as double-checking something in case of
doubt. This behavioral ritual could serve a perfectly banal
physiologic need. However, patients with OCD might have
insufficient “motivational satiety” that prevents resolution and
proper termination of the obsession.

To answer the many unresolved questions regarding OCD,
continued efforts to understand the circuitry involved need to
be undertaken, with particular attention to distinct brain
regions, cell types, and the roles of modulatory neurotrans-
mitters. Some OCD animal models discussed in this review
point toward specific dysregulations that might be relevant as
OCD endophenotypes—CSTC hyperactivity and dysfunctional
task-specific behavioral performance, including in adaptive
switching to novel stimulus-reinforcement associations.
Despite the limitations in using animal models to study
neuropsychiatric disorders, these findings in the evolutionally
conserved CSTC circuitry might be relevant across DSM
diagnoses and help to guide future translational studies.
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