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Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both
environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have
been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene
encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode
nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In
the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the
molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of
AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a
reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our
findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic
transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability.
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Introduction
Intellectual disability (ID), formerly known as mental retarda-
tion, is a common neurodevelopmental disorder characterized by

significantly reduced intellectual abilities and impaired adaptive
function (American Psychiatric Association, 2013). ID is esti-
mated to affect �2%-3% of the population worldwide, with the
etiology related to both environmental insults and genetic defects
(van Bokhoven, 2011). Despite broad genetic heterogeneity, a
growing number of ID risk genes are converging on commonReceived July 2, 2015; revised Dec. 21, 2015; accepted Jan. 13, 2016.
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Significance Statement

Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are un-
known. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic
growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic
deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus
granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of
Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 defi-
ciency in the development of intellectual disability.
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signaling pathways in regulation of actin cytoskeleton (van Bok-
hoven, 2011; Pavlowsky et al., 2012). This reflects the fact that
actin, as one of the most enriched cytoskeleton proteins, plays
important roles in neuronal morphogenesis and structural plas-
ticity (Luo, 2002).

Microdeletions or microduplications of chromosome 4q35.1
in humans have been linked to ID (Rossi et al., 2009). SORBS2
(sorbin and SH3 domain containing 2), also known as ArgBP2
(Arg/c-Abl kinase binding protein 2) (Wang et al., 1997), is one of
the candidate genes located in this region that may contribute to
the development of cognitive impairments in patients (Rossi et
al., 2009). SORBS2, SORBS1 (also known as CAP/Ponsin), and
SORBS3 (also known as Vinexin), together constitute a novel
adaptor protein family that is characterized by having a sorbin
peptide homology (SoHo) domain in their N-terminal region
and three Src-homology 3 (SH3) domains in the C-terminal re-
gion (Kioka et al., 2002). Through alternative RNA splicing,
SORBS2 gene encodes multiple transcripts, including four
ArgBP2 isoforms (�, �, �, and � isoform) and the neuronal iso-
form, nArgBP2 (Wang et al., 1997; Kawabe et al., 1999; Yuan et
al., 2005; Murase et al., 2012). ArgBP2/nArgBP2 isoforms are
widely expressed in human tissues and are especially abundant in
the brain, heart, pancreas, colon, etc. (Wang et al., 1997). Previ-
ous studies revealed that ArgBP2 colocalizes with actin at cell
adhesion sites and stress fibers and interacts with multiple cell
adhesion molecules and actin regulators (Kioka et al., 2002;
Roignot and Soubeyran, 2009; Anekal et al., 2015). Overexpres-
sion of ArgBP2 in cells promotes stress fiber formation, increases
cell adhesion, and reduces cell migration (Martin et al., 2013;
Anekal et al., 2015), whereas knockdown of ArgBP2 in astrocytes
leads to focal adhesion protein dispersion and enhanced periph-
eral actin ruffling (Cestra et al., 2005). These studies suggest that
ArgBP2 functions as an adaptor to coordinate multiple signaling
complexes to the regulation of the actin cytoskeleton (Kioka et
al., 2002; Roignot and Soubeyran, 2009).

In the brain, nArgBP2 is the only isoform highly expressed and
is characterized by the presence of a neuronal-specific exon
(NSE) that is absent in other ArgBP2 isoforms (Kawabe et al.,
1999; Cestra et al., 2005). Although nArgBP2 is reported to local-
ize at synapses and interact with the synaptic scaffolding protein
SAPAP (Kawabe et al., 1999; Cestra et al., 2005), little is known
about nArgBP2 function in brain and whether nArgBP2 defi-
ciency could contribute to ID. In this study, we first characterized
nArgBP2 distribution in the developing mouse brain and then
investigated nArgBP2 function in vivo using Sorbs2 knock-out
(KO) mice. We found that nArgBP2 colocalized with F-actin at
dendritic growth cones and spines and was highly expressed in
the cortex, amygdala, and dentate gyrus (DG) in the mouse brain.
Deletion of Sorbs2 in mice reduced dendritic complexity and
excitatory synaptic transmission in DG granule cells and im-
paired acoustic startle response and long-term memory. To-

gether, these results revealed an important function of SORBS2 in
the brain and thus may facilitate the study of neurobiological
mechanisms underlying SORBS2 deficiency in the development
of intellectual disability.

Materials and Methods
Mice. Sorbs2 mutant mice were generated by introducing loxP sites to
flank the target exon through homology recombination in mouse R1 ES
cell by using standard procedures as previously described (Heyer et al.,
2012). Exon 12 encoding Sorb C-terminal domain of mouse Sorbs2 tran-
script (Ensembl ID: ENSMUST00000171337) was targeted because this
exon was predicted to be present in most sorbs2 transcripts and its dele-
tion would lead to reading frame shift in the following exons, which
presumably will cause degradation of Sorbs2 transcripts through
nonsense-mediated mRNA decay (Kervestin and Jacobson, 2012). A tar-
geting vector contains 1 kb homology arm and a LoxP-Frt-SV40Pro-
Neo-pA-Frt cassette 389 bp upstream of exon 12, and a loxP site with 6 kb
homology arm 676 bp downstream of this exon. This vector was electro-
porated into mouse R1 ES cells, and correct recombinant clones were
selected by PCR screening and further verified by sequencing. One pos-
itive ES clone was implanted into C57 blastocysts, and the chimera off-
spring were either crossed with germline transmittable betaActin-FLP
mice (The Jackson Laboratory, stock #005703) or with germline trans-
mittable betaActin-Cre mice (The Jackson Laboratory, stock #019099) to
produce Sorbs2 floxed mouse line or Sorbs2 global heterozygote, respec-
tively. Both Sorbs2 mutant lines were backcrossed to C57BL/6J (The
Jackson Laboratory, stock #000664) for �6 generations. Sorbs2 heterozy-
gotes were bred with each other to generate wild-type (WT) and global
KO littermates for all the experiments presented in the work. Primer
Sorbs2 GT-F1 (5�CATCGTCATGCTTGTGAAGG 3�) and Sorbs2 GT-R1
(5�ATCGAGCTCAGATCTTCAGG3�) were paired to detect WT (222
bp) and LoxP (313 bp) alleles; primer pairs of Sorbs2 GT-F1 and Sorbs2
GT-R2 (5�CTGTGGCAACCTTATCATGC3�) were used to detect KO
(408 bp) allele.

Mice were housed at constant 22°C, on a 12 h light/dark cycle with free
access to food and water. Each cage contains 2–5 mice regardless of
genotype. All experimental procedures were reviewed and approved by
the Massachusetts Institute of Technology Committee on Animal Care.

Antibodies. Anti-Sorbs2NSE and anti-Sorbs2C antibodies were produced
by using similar strategies as previously described (Welch et al., 2004). Prim-
ers Sorbs2NSEAg-F (5�GGGGATGATAGCAAAATGTGTCC3�) and
Sorbs2NSEAg-R (5�GCGAGTGGGCACCACGTCCC3�) were used to am-
plify cDNA fragment coding the first 201 amino acids of Sorbs2 NSE; primers
Sorbs2CAg-F (5�CACGGCAGAGTGGGCATTTTC3�) and Sorbs2CAg-R
(5�CAGCCTTTTGACATAGTTTCCGG3�) were paired to clone the last
195 amino acids of ArgBP2/nArgBP2. These amplified cDNA fragments
were then cloned in frame into pET-23b (�) vector to express His-tagged
fusion proteins in BL21(DE3) Escherichia coli. Purified His-tagged fusion
proteins were used to immunize rabbits to generate polyclonal antibodies,
which were further affinity-purified by using Sepharose 4B beads (Sigma)
cross-linked with the corresponding antigens. Antibodies against �-tubulin
(Sigma, T5168), Brn2 (Abcam, ab94977), calretinin (Millipore, AB5054),
Ctip2 (Abcam, ab18465), GAPDH (Santa Cruz Biotechnology, sc-32233),
Gephyrin (Synaptic System, 147021), GFAP (Sigma, G9269), GFP (Invitro-
gen, A11122; and Millipore, MAB3580), PSD95 (Thermo Scientific, MA1-
045), and synaptophysin (Thermo Scientific, 18-0130) are commercially
available. Rabbit polyclonal antibodies against NetrinG1 and NetrinG2 were
used as previously described (Nishimura-Akiyoshi et al., 2007).

DNA plasmids. Murine full-length cDNA for nArgBP2 was PCR ampli-
fied from mouse brain cDNA by using primer nArgBP2FL_SacI_F (5�GC
GAGCTCCATGAATACAGATAGCGGTGGG3�) and nArgBP2FL_KpnI_
R primer (5�GCGGTACCTCACAGCCTTTTGACATAGTTTCCG3�).
PCR fragments were digested to place between SacI and KpnI sites of
pEGFP-C2 vector to make GFP-nArgBP2 fusion protein. GFP-
nArgBP2�NSE mutant was made by removing NSE from nArgBP2 through
standard molecular cloning techniques. All the plasmids were verified by
sequencing. The nArgBP2 cDNA sequence cloned in this study was depos-
ited into GenBank (NCBI GenBank accession number KR610443) because
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we noticed that our sequence is slightly different from a previous cDNA
sequence from GenBank (NCBI Reference Sequence NM_00120
5219.1), suggesting the existence of alternative nArgBP2 isoform in mouse
brain.

Cell culture and immunocytochemistry. Low-density hippocampal neu-
rons from P0 mice were cocultured with rat astrocytes in a “sandwich”
format at the density of �12,500 cells/cm 2 as described previously
(Kaech and Banker, 2006). Medium-density (�50,000 cells/cm 2)
hippocampal or cortical neurons from P0 mice were cultured on RD
German coverslips (Bellco Glass) that were precoated with 20 �g/ml
poly-D-lysine (Sigma, P7405) and 4 �g/ml laminin (Invitrogen). High-
density (�120,000 cells/cm 2) of mouse cortical neurons and astroglia
cells were prepared from P0 pups and expanded in tissue culture dishes
for preparing cell lysates. Neurons were transfected on DIV4/5 by using
Lipofectamine 2000 (Invitrogen).

Neuron cultures were stained as previously described with minor
modifications (Zhang et al., 2009). Briefly, cells on coverslips were fixed
in PBS containing 4% PFA and 4% sucrose for 15 min at room temper-
ature, permeabilized with 0.2% Triton X-100 in PBS for 5 min, and
followed by blocking with 15% normal goat serum, 5% BSA and 0.02%
Tween 20 in PBS for 1 h. Primary antibodies diluted in blocking buffer
were applied to fixed cells overnight at 4°C, followed by washing four
times with blocking buffer at the interval of 5 min, and revealed by
AlexaFluor-conjugated secondary antibodies (1:1000 dilution in block-
ing buffer, Invitrogen). DAPI (Sigma) was used to reveal nucleus. Cov-
erslips were mounted on glass slides with ProLong Gold Antifade
Mountant (Invitrogen) or Fluoro-Gel (Electron Microscopy Sciences)
before imaging. Olympus Fluoview FV1000 confocal microscope with
60� objective lens (UPlanSApo, 1.35 oil) was used to capture images at
the size of 1024 � 1024 pixels. Z-stack images were acquired at 0.50 �m
interval for a total depth of 2 �m. Maximum intensity projections were
then formed from the Z-stacks.

Immunohistochemistry. Mice were deeply anesthetized with isoflurane
and transcardially perfused with PBS solution followed by 4% parafor-
maldehyde (PFA) in PBS. Brains were dissected out and kept in 4% PFA
in PBS overnight at 4°C. Fixed brains were either directly sliced at 50 –100
�m thickness by using Vibratome machine or further cryoprotected with
30% (w/v) sucrose and O.C.T. (Sakura) before being sectioned by using
cryostat machine (Leica, CM1850). For immunohistochemistry, floating
brain slices were washed once with PBS and then permeabilized with
0.5% Triton X-100 in PBS for 30 min at room temperature, followed with
blocking in 15% normal goat serum, 5% BSA, 0.2% Triton X-100 in PBS
for 1 h at room temperature. Primary antibodies diluted in blocking
buffer were applied to sections overnight at 4°C. Slices were then washed
four times with 0.1% Tween 20 in PBS for 15 min each and stained with
secondary antibodies conjugated with Alexa488/555/647 (Invitrogen)
for 2 h at room temperature or overnight at 4°C, followed by DAPI
staining in PBS for 15 min. Slices were further washed three times with
0.1% Tween 20 in PBS and one time with PBS. VECTASHIELD mount-
ing medium (Vector Laboratories) or Fluoro-Gel (Electron Microscopy
Sciences) was used to mount slices on glass slides. Images were captured
by using Olympus Fluoview FV1000 confocal microscope.

Tissue lysate preparation and immunoblotting. The lysates of GFP-
nArgBP2 or GFP-nArgBP2�NSE transfected HEK293T cells, cortical
neurons, and astroglia cells were prepared in a similar way. Briefly, cell
cultures were washed once with ice-cold PBS and lysed in cold RIPA
buffer containing protease inhibitors (cOmplete protease inhibitor mix-
ture tablets, Roche) and phosphatase inhibitors (PhosSTOP, phospha-
tase inhibitor mixture tablet, Roche). Cell lysates were further subjected
to brief sonication before centrifugation at 13,200 rpm at 4°C for 5 min.
Supernatants were collected for BCA protein quantification (Pierce), and
equal amount of proteins were subjected to SDS-PAGE (Bio-Rad). To
collect mouse tissues, mice were deeply anesthetized with isoflurane and
transcardially perfused with ice-cold PBS solution to remove blood.
Brain and heart tissues were quickly dissected and snap frozen in liquid
nitrogen before storing in �80°C. Mouse tissue lysates were prepared by
using Dounce Tissue Grinder (Wheaton) and RIPA buffer containing
protease and phosphatase inhibitors. Tissue extracts were centrifuged at
13,200 rpm at 4°C for 10 min before collecting supernatant. Equal

amount of proteins were separated on SDS-PAGE and transferred to
nitrocellulose membranes (Whatman). The membranes were then
blocked with 5% (w/v) nonfat milk (Millipore) in TBS for 1 h at room
temperature. Primary antibodies were diluted in 5% nonfat milk in TBST
(TBS plus 0.05% Tween 20) and incubated with the membranes at 4°C
overnight. Excess antibodies were removed by washing membranes in
TBST 4 times for 15 min each at room temperature. Secondary antibod-
ies conjugated with IRDye 680/800 were diluted in Odyssey blocking
buffer and applied to the membranes for 1 h at room temperature. After
another extensive washing with TBST, membranes were imaged on
ODYSSEY CLx machine (Li-COR).

Lentivirus production and transcranial injection. The ubiquitin pro-
moter in lentivirus vector FUGW (Lois et al., 2002) was replaced with
human synapsin-1 promoter to confer neuronal specificity (Glover et al.,
2002). P2A-iCre cassette was cloned into the modified vector to express
GFP-P2A-iCre fusion protein. Concentrated viral particles expressing
GFP or GFP-P2A-iCre were produced as previously described (Welch et
al., 2007), and 0.5 �l of each virus was transcranially injected into the DG
of adult mice following the same procedures as reported previously
(Barak et al., 2013).

Morphological characterization of dendritic trees and spines. Previous
studies demonstrate that adeno-associated virus (AAV) with serotype 2/9
can cross the blood– brain barrier to infect neurons (Foust et al., 2009),
and EGFP with membrane-targeting signal (EGFPf) (Hancock et al.,
1991) can promote spine labeling (Cai et al., 2013). Based on these find-
ings, we developed a viral-based method to sparsely label neurons with
EGFP. Briefly, the backbone of AAV viral vector pAAV-EF1a-DIO-
ChR2-EYFP-WPRE-HGHpA (Gunaydin et al., 2010) was used to make
pAAV-hSyn1-EGFP-P2A-EGFPf-WPRE-HGHpA vector, in which
human synapsin-1 promoter drives the expression of EGFP and
membrane-targeted EGFPf (Hancock et al., 1991) linked by self-cleaving
P2A peptide (Kim et al., 2011). Purified viral particles were generated
from this vector with serotype 2/9 by Penn Vector Core at the University
of Pennsylvania. To sparsely label the dentate granule cells, 25 �l AAV
virus at the titer of 2 � 10 12 (GC/ml) in PBS were delivered into mouse
cardiovascular system through retro-orbital injection of the venous sinus
as previously described (Yardeni et al., 2011). Sorbs2 KO and WT litter-
mates were injected with virus at the age of P14 and killed 3 weeks later
for immunohistochemistry. PFA-fixed 200-�m-thick coronal brain
slices were sectioned by using Vibratome machine as mentioned above.
Anti-GFP antibody was used to visualize the EGFP-P2A-EGFPf expres-
sion. Immunohistochemistry was performed similarly as described ear-
lier, except that 2 h permeabilization with 0.5% Triton X-100 in PBS, 48 h
incubation of primary antibody, and 24 h incubation of secondary anti-
body were applied to increase the penetrance of antibodies. After stain-
ing, each slice was surrounded by a 240-�m-thick spacer (Electron
Microscopy Sciences) and mounted on slides with nonhardening
Vectashield mounting medium (Vector Laboratories, catalog #H-1000).

Olympus Fluoview FV1000 confocal microscope was used to image
EGFP-labeled DG granule cells if they were located in the middle of the
suprapyramidal blade, and their cell bodies occupied the outer half of the
DG granule cell layer from coronal sections �2.0 –2.4 mm posterior to
bregma point. To acquire relatively intact dendritic trees, neurons lo-
cated around the center in the depth of sections were imaged under 40�
oil lens at 1 �m interval for a total thickness of �100 �m. Each neuron
was manually traced by using Neurolucida software (MBF Bioscience)
for 3D reconstruction and measurements. Dendritic complexity was as-
sessed by using Sholl analysis to examine dendritic intersections per 20
�m concentric radial interval from cell body.

Dendritic segments located at the outer one-third of DG molecular
layer were randomly selected for imaging spines. Stack images (1024 �
1024 pixels) at 150 �m interval were acquired by using 60� oil lens plus
6� zoom in. Huygens Deconvolution software (Scientific Volume Im-
aging) was used to process the images. Spines for the imaged dendritic
segments were automatically detected and grouped into mushroom,
thin, stubby spines by using NeuronStudio software (Rodriguez et al.,
2008) with post hoc manual correction.

Experimenters were blinded to genotypes of mice during viral injec-
tion, imaging, and measurement analyses. Similar numbers of male and

Zhang et al. • Sorbs2 KO Impairs Dendritic Complexity and Memory J. Neurosci., February 17, 2016 • 36(7):2247–2260 • 2249



female mice from each genotype were used for the analysis of dendritic
complexity and dendritic spines.

Electrophysiological studies. The 5-week-old mice were used for the
whole-cell electrophysiology procedures. Plasticity experiments were
performed on 3- to 4-week-old mice. Experimenters were blinded to
mouse genotypes during the recordings and data analysis. Acute hori-
zontal hippocampal slices were prepared as previously described
(Laplagne et al., 2006). Briefly, mice were anesthetized with Avertin so-
lution (20 mg/ml, 0.5 mg/g body weight) and transcardially perfused
with 15–20 ml ice-cold carbongenated (95% O2, 5% CO2) cutting solu-
tion containing the following (in mM): 194 sucrose, 30 NaCl, 4.5 KCl, 1.2
NaH2PO4, 0.2 CaCl2, 2 MgCl2, 26 NaHCO3, and 10 D-(�)-glucose (with
osmolarity of 340 –350 mOsm). The brains were then rapidly removed
and placed in ice-cold cutting solution for slice preparation. The hori-
zontal slices with a subtle angle (20°-30° off the horizontal axis, 300 �m)
were prepared using a slicer (VT1200S, Leica Microsystems) and then
incubated in a holding chamber (BSK4, Scientific System Design) at 32°C
for 10 –15 min with carbogenated aCSF as follows (in mM): 119 NaCl, 2.3
KCl, 1.0 NaH2PO4, 26 NaHCO3, 11 glucose, 1.3 MgSO4, 2.5 CaCl2 (pH
7.4, with osmolarity of 295–305 mOsm). The slices were then transferred
to the carbongenated aCSF at room temperature for at least 1 h. Before
the recordings, the slice was placed in a recording chamber (RC-27L,
Warner Instruments) and constantly perfused with carbongenated aCSF
at room temperature unless specified otherwise. The perfusion rate is at
2.0 –3.0 ml/min. Whole-cell patch-clamp recordings from dorsal DG
were performed with IR-DIC visualized guide. Recording pipettes
(KG33, King Precision Glass) were pulled in a horizontal pipette puller
(P-97, Sutter Instruments) with a tip resistance of 3–5 M	. The pipettes
were filled with the internal solution containing the following (in mM):
110 CsOH (50% wt), D-gluconic acid (49%–53% wt), 4 NaCl, 15 KCl, 5
TEA-Cl, 20 HEPES, 0.2 EGTA, 5 lidocaine N-ethyl chloride, 4 ATP mag-
nesium salt, and 0.3 GTP sodium salt. pH was adjusted to 7.2–7.3 with
KOH, and osmolarity was adjusted to 298 –300 mOsm with 15 mM

K2SO4. Cells in which the series resistance (Rs, typically 8 –12 M	)
changed by �20% were excluded for data analysis. In addition, cells with
Rs �20 M	 at any time during the recordings were discarded. Cell mem-
brane potential was held �70 mV with a Multiclamp 700B amplifier
(Molecular Devices). Signals were low-pass filtered at 2 kHz and sampled
at 10 kHz with a Digidata 1440A (Molecular Devices), and data were
stored on a computer for subsequent off-line analysis.

To record AMPA miniature EPSCs (mEPSCs), the cells were held
at �70 mV in the presence of 50 �M DL-APV, 100 �M picrotoxin, and 1
�M TTX (all from Tocris Bioscience). The miniature events were not
recorded until 5 min after entering whole-cell patch-clamp recording
mode to allow the dialysis of Cs � internal solution for a relatively
complete block of the potassium channels in the DG granule cells. The
mEPSCs were detected and analyzed with MiniAnalysis (Synaptosoft).

For paired-pulse stimulation (PPR) experiments, AMPAR-mediated
EPSCs were evoked by a local concentric bipolar stimulating electrode
(CBARC75, FHC). Recordings were made in the presence of picrotoxin
(100 �M) and DL-APV (50 �M) to block activation of GABAA receptors
and NMDA receptors. Stimulation was current-controlled (ISO-Flex,
AMPI). The stimulus intensity was set at a level that could evoke 200 –300
pA of AMPAR-mediated response for all the cells measured and deliv-
ered with an interstimulus interval of 50 ms. Paired-pulse measurements
were obtained for 15 consecutive traces, and only those traces with stable
evoked first current response were used for data analysis. The PPR was
calculated with the peak current response to the second pulse divided by
that of the first response.

Field EPSPs (fEPSPs) were recorded with glass electrodes filled with
2 M NaCl and were evoked every 30 s with a local concentric bipolar
stimulating electrode (CBARC75, FHC), which was placed at the lateral
perforant path in the DG. Stimulation strength was set to a level that
evokes 30%– 40% of the maximum slope of fEPSP. LTP was induced by
a burst stimulation protocol consisting of a total of 80 stimuli as 20
discrete bursts of four stimuli that allows constant and substantially less
decline following stimulation as Grover et al. (2009) described. Briefly, a
15 min baseline recording period preceded burst stimulation, and the
slices that failed to show stable fEPSP slopes during this period were

excluded from further analysis. Burst intervals were 500 ms; stimuli
within bursts were always delivered at 10 ms intervals (100 Hz) (Grover et
al., 2009). LTP was quantified by comparing the mean fEPSP slope over
the 25–30 min after burst stimulation with the mean fEPSP slope during
the baseline period and calculated the percentage change from baseline.
For LTD experiments, the stimulus intensity that evokes 40%–50% of the
maximum response of fEPSP was set. A low-frequency stimulation (LFS)
protocol (1 Hz, 900 pulses, 15 min) was used for induction of LTD. LTD
was quantified by comparing the mean fEPSP slope over the 30 min after
LFS with the mean fEPSP slope during the baseline period and calculated
the percentage change from baseline.

Behavioral test. Sorbs2 WT and KO littermates were produced from
heterozygous breeding pairs, and 2–5 mice were housed in the same cage
regardless of genotype. Only male mice �2– 4-months of age were used
for behavioral assays, which were conducted during the light phase. Ex-
perimenters were blinded to mouse genotypes during all tests and data
analyses.

Open field. Spontaneous locomotion was measured by placing mouse
in a Plexiglas box 40 cm � 40 cm � 30 cm (WLH) for 1 h. Motor activity
was detected by infrared photobeam sensors and analyzed by VersaMax
animal activity monitoring system (AccuScan Instruments).

Elevated zero maze. The test was performed as previously described
(Peça et al., 2011). Briefly, mouse was placed in the close arm of an
elevated zero maze and video-recorded for 5 min. The duration that
mouse stayed in the open-arm was coded by an observer blinded to the
mouse genotype.

Acoustic startle threshold and prepulse inhibition (PPI) test. Startle Re-
flect Station (Kinder Scientific) was used to perform the test. Mice were
habituated in startle chambers and exposed to 65 dB background white
noise for 5 min at 3 d before testing. The order of startle threshold test
and PPI test was counterbalanced in 2 d: half of the mice were subjected
to either acoustic startle threshold test or PPI test on first day, followed by
the other test on the following day. A 65 dB background white noise was
presented continually in both tests. For startle threshold test, each mouse
was placed in the chamber 5 min before the start of testing session, which
includes a total of 92 stimuli (trials) presented in pseudorandom order,
with intertrial intervals ranging from 7 to 23 s. The stimuli include a
presentation of 8 pulse-alone trials (120 dB, 40 ms pulse, four at the
beginning and 4 at the end of the session), 77 pulse trials (7 each of 70, 75,
80, 85, 90, 95, 100, 105, 110, 115, and 120 dB, 40 ms pulse), and 7 trials
each without pulse presentation. In each trial, the response to startle
stimulus is measured in Newtons. Startle at each pulse level is averaged
across trials for data analysis.

Prepulse inhibition test was performed in a similar way, except that
each mouse received a total of 57 stimuli (trials) presented in pseudoran-
dom order, with intertrial intervals ranging from 7 to 23 s. The stimuli
include a presentation of 8 pulse-alone trials (120 dB, 40 ms pulse, four at
the beginning and 4 at the end of the session), 35 prepulse trials (7 each of
70, 75, 80, 85, and 90 dB, 20 ms prepulse given 100 ms before a 120 dB, 40
ms pulse), and 7 trials each without pulse or prepulse presentation. In
each trial, the response to startle stimulus was measured in Newtons 65
ms after the presentation of pulse. This measurement is averaged for each
prepulse level within the session. The percentage of PPI expressed within
each test session is calculated as follows: [100 � (mean prepulse re-
sponse/mean pulse response) � 100]. Data are shown as mean 
 SEM
and analyzed with two-way ANOVA with Bonferroni’s post hoc analysis.

Novel object recognition task. The test was performed as reported before
with minor modifications (Kim et al., 2013). Nontransparent Plexiglas
boxes (30 cm � 30 cm � 30 cm) under 25 lux illumination were used as
arenas. Novel object recognition test was divided into three 10-min-long
sessions separated by 10 min and 24 h intervals to test short-term and
long-term object recognition memory. Three pairs of objects were used
in the test, and naive mice showed no significant innate preference to any
of the objects. Test mice were first habituated to the arenas 10 min daily
for 3 consecutive days. On day 4, two identical objects (T1 and T2) were
used in the first session and placed 15 cm away from opposite corners of
the arena. Test mice were placed in the boxes to allow free exploration for
10 min before returning back to home cages. After a 10 min delay, one of
the familiarized objects (T1/T2) was replaced with a novel object (N1) in
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the second session before putting mice back to the arenas. At 24 h later,
the third session was performed by introducing mice back to arenas
where the object N1 was replaced with another novel objects (N2). Each
session was video-recorded from top view and multiple body points
(nose point, body center, and tail base) of mice and analyzed by Ethovi-
son (Noldus). The first 5 min of each test session was selected for analysis.
Close interaction to objects is defined as mouse nose point within 2 cm
close to object, but the body center is 1 cm away from object (to exclude
the events that mice sat on top of the objects). The percentage of time
spent in close interaction with novel objects relative to the total time
spent in close interaction with both objects was used to generate prefer-
ence index. Two-tailed unpaired t test was used to compare the prefer-
ence index between genotypes.

Contextual fear conditioning. NIR Video Fear Conditioning System
(Med Associates) was used for assessment of fear learning and memory
behavior in mice as previously described (Anagnostaras et al., 2010).
Mice were group housed in a holding room separate from the test room
and were daily handled 2–3 d before the test. For contextual fear condi-
tioning, the context consisted of an unmodified chamber (32 cm � 25
cm � 25 cm; WLH) with a grid floor (36 stainless steel rods); each rod is
2 mm diameter and spaced 8 mm apart. The chamber was illuminated
with white light during the test and placed in a sound attenuation box
with 65 dB background noise generated by the fan inside. On training
day, mice in the home cage were covered by a black plastic bag and
carried into the test room. Each mouse was then placed into the fear
conditioning chamber and allowed free exploration for 150 s. A 2 s 0.65
mA electric shock was then delivered three times at 60 s interval. At 30 s
after the last shock, mice were removed from chambers to their home
cage and returned to the holding room. Chambers were cleaned with
70% ethanol before and after each trial. At 24 h later, mice were returned
to the previous chambers with the same context, following exactly the
same procedure as on the training day. The test was run for 5 min without
delivering foot shock. Recorded videos were analyzed by Video Freeze
software (Med Associates). Freezing was defined as motion index �22
for 1 s.

Toned fear conditioning. A separate cohort of mice was used for toned
fear conditioning. On training day, the test room was illuminated with
red light, and context was arranged the same way as contextual fear
conditioning, except that no white light was presented during the whole
training session. Mice in home cage were carried in a black plastic bag
into the test room. Each mouse was then placed into fear conditioning
chamber and allowed free exploration for 3 min. A combination of 20 s
tone (2800 Hz, 85 dB) that coterminated with a 2 s 0.65 mA shock was
delivered 5 times at a 3 min interval. At 3 min after the last shock, mice
were collected from chambers to their home cage and returned to the
holding room. Chambers were cleaned with 70% ethanol before and after
each trial. At 24 h later, the test room was illuminated with white light,
and each chamber was decorated with smooth white plastic floor and
black A-frame ceiling, illuminated with white light and scented with 1%
acetic acid. Mice in the home cage were carried in a white plastic bag into
the test room and placed into the fear conditioning chamber. After a 2
min baseline period, a 20 s tone (2800 Hz, 85 dB) was then delivered 5
times at 3 min interval without delivering foot shock. Freezing time in the
baseline period and the average of freezing time in the presentation of
tones were used for analysis.

Morris water maze. A circular pool of 120 cm in diameter was used in
the test, with water maintained at 23.0 
 0.5°C and made opaque by
white nontoxic tempera paint (Paint White 5130, Berghausen). The pool
was centered in a test room (2.5 m � 2.5 m) with black curtains on the
walls. Depending on test sessions, 4 distinct high-contrast posters, serv-
ing as space cues, were either hanged or not on the walls. A round plat-
form of 10 cm in diameter was positioned 0.5 cm below water surface.
Ethovison software (Noldus) was used to track mice in the maze and
analyze data. The test was performed as previously described with minor
modifications (Vorhees and Williams, 2006). Mice were first subjected to
2 d (days 1 and 2) visible platform training with platform position
changed daily. During this training, visual cues on the black walls were
removed, and a 15 ml falcon tube wrapped with black and white strips
was placed on top of the platform. Each mouse received four 90 s trials

separated by 10 min interval on every training day. In each trial, the
mouse was released into the pool facing pool wall at pseudo-random
starting positions. After reaching the platform, the mouse was allowed to
stay on platform for 15 s before being moved back to home cage; when it
failed to find the platform within 90 s, the mouse was manually placed on
the platform for 15 s. After visible platform training session, spacial cues
were hanged back on the walls, the 15 ml tube was removed from the
platform, and position of the platform was moved to a new quadrant and
fixed there through the following 6 d (day 3– 8) of invisible platform
training session. Each mouse received 4 trials of training daily as de-
scribed in the previous session. At 24 h after the last training (day 9), the
platform was removed and 60 s probe trials were performed after releas-
ing mice at the center of the pool. The daily averaged latency to reach
platform of each mouse was used to assess learning progress. Duration
that mice stayed in each quadrant in the probe test was used to evaluate
the spacial memory. Data were shown as mean 
 SEM and analyzed with
one-way ANOVA with Bonferroni’s post hoc analysis.

Results
nArgBP2 colocalizes with F-actin at dendritic growth cones
and spines
To specifically examine nArgBP2 distribution in neurons, we
used the first 201 amino acids of the NSE as an antigen to generate
an anti-Sorbs2NSE antibody (Fig. 1A). Western blot analysis
confirmed that anti-Sorbs2NSE recognized a GFP-nArgBP2 fu-
sion protein, but not a GFP-nArgBP2�NSE mutant that lacks the
NSE (Fig. 1B–D). The specificity of the anti-Sorbs2NSE antibody
was further confirmed by probing brain homogenates and pri-
mary cell cultures from mice that lack nArgBP2 expression (Fig.
3C,D). Consistent with the previously reported mRNA distribu-
tion (Kawabe et al., 1999), nArgBP2 protein was only detected in
brain tissue (Fig. 3C; and data not shown) and exclusively in
neurons (Figs. 1E,F; 3D).

To study the subcellular localization of nArgBP2, we per-
formed immunocytochemistry with the anti-Sorbs2NSE anti-
body on low-density cultured mouse hippocampal neurons at
early [2 DIV (DIV2)] and mature (DIV23) developmental stages.
At DIV2, when neurons were actively extending neurites,
nArgBP2 colocalized with F-actin (revealed by phalloidin stain-
ing) and was highly enriched at dendritic and axonal terminals
(Fig. 1E,F), whereas in mature neurons at DIV23, nArgBP2 was
mainly enriched in dendrites, not axons (Fig. 1G). Within den-
drites, nArgBP2 colocalized with F-actin at dendritic spines and
dendritic growth cones (Fig. 1H). These dendritic nArgBP2-
positive clusters also colocalized well with the excitatory postsyn-
aptic scaffolding protein PSD95 (Fig. 1I–L) but rarely overlapped
with inhibitory postsynaptic scaffolding protein gephyrin (Fig.
1M–P), suggesting that nArgBP2 may have a specific function at
excitatory synapses.

The presence of the NSE is the major structural feature that
differentiates nArgBP2 from ArgBP2 isoforms (Kawabe et al.,
1999). To investigate the function of NSE in nArgBP2, GFP-
nArgBP2 and GFP-nArgBP2�NSE mutants were transfected into
medium-density cultured cortical neurons at DIV5 and were ex-
amined for their distribution at DIV21 when neurons were ma-
ture. Whereas GFP-nArgBP2 fusion protein faithfully
recapitulated the distribution of endogenous nArgBP2 at den-
dritic spines (Fig. 1Q,R; and data not shown), the GFP-
nArgBP2�NSE mutant was less prominent at spines, with a much
higher enrichment at the soma and dendritic shafts (Fig. 1S,T),
suggesting that NSE is required for nArgBP2 to efficiently target
to dendritic spines.
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nArgBP2 is enriched in the cortex, amygdala, and DG in the
mouse brain
Next, we investigated nArgBP2 protein expression patterns in the
mouse brain using the anti-Sorbs2NSE antibody on serial mouse

brain sections. As shown in Figure 2A, nArgBP2 is broadly ex-
pressed in the mouse brain with high expression level in the cor-
tex, amygdala, and DG, and moderate expression level in
striatum, lateral habenula, and thalamus. Within cortical regions,

Figure 1. nArgBP2 distribution in cultured neurons. A, Domain diagram of GFP-nArgBP2 and GFP-nArgBP2�NSE fusion proteins. Sorb, Sorbin homologous domain; SH3, Src homology 3 domain.
Magenta bar represents the position of NSE. Gray bar represents the antigen region used to generate anti-Sorbs2NSE antibody. B–D, Anti-Sorbs2NSE antibody specifically recognizes GFP-nArgBP2
(lane 1) but not GFP-nArgBP2�NSE (lane 2) fusion protein by Western blot. E, F, Localization of nArgBP2 in low-density cultured hippocampal neuron at 2 DIV (DIV2). Arrow and box “a” represent
axonal growth cone. Arrow and box “d” represent the dendritic growth cone. Images in the boxes represent 3� enlarged view of growth cones: merged images (left) of Phalloidin (middle) and
nArgBP2 (right). A non-neuronal cell labeled by asterisk shows the background staining from anti-Sorbs2NSE antibody. G, H, Localization of nArgBP2 in low-density cultured hippocampal neuron
at DIV23. Arrow indicates axonal initial segment; 3� magnified view of a dendritic segment shows the colocalization (merged image, left) of Phalloidin (middle) and nArgBP2 (right) at dendritic
growth cone and spines. I–L, Distribution of nArgBP2 and PSD95 in low-density cultured hippocampal neurons. Yellow arrow indicates the colocalization of nArgBP2 with PSD95. M–P, Distribution
of nArgBP2 and Gephyrin in low-density cultured hippocampal neurons. Green and red arrowheads point to puncta enriched with nArgBP2 and Gephyrin, respectively. Q–T, Distribution of
exogenous GFP-nArgBP2 and GFP-nArgBP2�NSE fusion proteins in medium-density cultured cortical neurons. Arrows indicate the position of neuronal cell body, where GFP-nArgBP2 is less
enriched than GFP-nArgBP2�NSE (Q, S). Enlarged boxed regions highlight enrichment of GFP-nArgBP2 at spines (R) and have uniform distribution of GFP-nArgBP2�NSE (T ).
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nArgBP2 immunoreactivity was more intense in layers I-III in the
neocortex (Fig. 2A, box 3) and layer I of piriform cortex (Fig. 2A,
box 2). In the DG, nArgBP2 was specifically enriched at the edge
of the molecular layer (Fig. 2A, box 1). Based on afferent axonal
inputs, the DG molecular layer is divided into three laminas:
outer molecular layer (OML), which receives axonal projection
from lateral entorhinal cortex; medial molecular layer, which is
innervated by axonal inputs from medial entorhinal cortex; and
inner molecular layer, which receives axonal innervation from
mossy cells in the contralateral and ipsilateral hilar region
(Förster et al., 2006; Witter, 2007). Labeling these layers using
layer-specific markers (Nishimura-Akiyoshi et al., 2007) revealed
that nArgBP2 immunoreactivity in DG was mainly restricted to
the OML (Fig. 2B–E). This laminated distribution of nArgBP2 in
DG emerged as early as postnatal day 4 (P4) in mice and became
more restricted by P21 and thereafter (Fig. 2F). nArgBP2 local-
ization paralleled the dendritic growth of DG granule cells (Ra-
himi and Claiborne, 2007), suggesting that nArgBP2 may play an
important role in dendritic development.

Generation of Sorbs2 KO mice
To study nArgBP2 function in vivo, we generated Sorbs2 condi-
tional KO mice by floxing an exon that is conserved in nearly all
the ArgBP2/nArgBP2 isoforms (see Materials and Methods; Fig.
3A). Sorbs2 floxed mice were paired with germline-transmittable
Cre transgenic mice to obtain Sorbs2 heterozygotes (Het), which
were further paired with each other to generate Sorbs2 KO mice

and WT littermates (Fig. 3A,B). Loss of
Sorbs2 in mice led to a �40%-60% mor-
tality in the first postnatal week; however,
surviving Sorbs2 KOs had normal body
weight and were generally indistinguish-
able from WT littermates (data not
shown). Characterization of Sorbs2 KO
mice confirmed ArgBP2/nArgBP2 pro-
teins were completely lost from both
mouse heart and brain tissue as revealed
by Western blot analysis using the anti-
Sorbs2C antibody, which recognizes the
conserved SH3 domains of ArgBP2 and
nArgBP2 proteins (Fig. 3C; see Materials
and Methods). We also confirmed loss of
nArgBP2 in Sorbs2 KO mouse brain using
the anti-Sorbs2NSE antibody (Fig. 3C).
Furthermore, we compared ArgBP2 and
nArgBP2 expression in cortical neuronal
and astroglial cultures prepared from WT
and Sorbs2 KO mice. As shown in Figure
3D, nArgBP2 was exclusively detected in
WT neuronal cultures and ArgBP2 was
specifically detected in the WT astroglial
cultures. Both ArgBP2 and nArgBP2 were
absent from Sorbs2 KO neuronal and as-
troglial cultures.

To assess whether Sorbs2 deletion can
affect gross brain structure, we compared
the overall brain morphology between
WT and Sorbs2 KO mice using coronal
and sagittal sections. As shown in Figure
4A, NeuN immunostaining of coronal
and sagittal sections was indistinguisha-
ble between genotypes. Additionally, KO
brains also exhibited normal cortex and

DG molecular layer lamination (Fig. 4B,C). Therefore, these
characterizations suggest that overall brain morphology is not
affected by Sorbs2 deficiency.

nArgBP2 is required for dendritic development of DG
granule cells
As shown in Figure 1E, F, nArgBP2 is present at both axonal and
dendritic terminals in cultured neurons. Therefore, the lami-
nated distribution of nArgBP2 in the DG molecular layer could
come from presynaptic compartments (i.e., axon terminals pro-
jected from lateral entorhinal cortex) or postsynaptic compart-
ments (i.e., dendritic terminals of DG granule cells). To
determine the source of nArgBP2, we removed nArgBP2 expres-
sion only from local DG neurons, leaving possible expression in
axonal terminals intact. We used lentivirus with neuronal-
specific promoter to deliver Cre recombinase to the DG neurons
in Sorbs2-floxed mice. The use of lentivirus limited expression of
Cre recombinase, and loss of Sorbs2, to local neurons in the DG,
particularly granule cells, because lentivirus has been shown to
transduce neurons mainly through somas but not axons (Gradi-
naru et al., 2009). Expression of LV-EGFP-P2A-Cre virus by DG
granule cells led to the loss of nArgBP2 immunoreactivity (Fig.
5D–F), indicating that nArgBP2 is enriched at dendritic termi-
nals of DG granule cells, consistent with nArgBP2 localization at
dendritic growth cones in cultured neurons (Fig. 1E,F).

Because nArgBP2 is highly expressed by DG granule cells
(Fig. 2), we asked whether nArgBP2 plays a role in DG granule

Figure 2. Expression patterns of nArgBP2 in the mouse brain. A, A coronal section shows expression patterns of nArgBP2 in the
mouse brain. Boxes 1–3 outline brain regions that are magnified. nArgBP2 is highly expressed in the DG molecular layer (Box 1), the
amygdala (Amg) and layer I of piriform cortex (Pir) (Box 2), and also layer I-III of neocortex (Box 3). B–E, Comparison with DG inner
molecular layer (IML) marker Calretinin (B), medial molecular layer (MML) marker NetrinG2 (C), and outer molecular layer (OML)
marker NetrinG1 (D) reveal that nArgBP2 is enriched in the OML (E). F, nArgBP2 distribution in DG during development from P1 to
P21. SR, Stratum radiatum; SLM, stratum lacunosum-moleculare; GCL, granule cell layer.
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cell dendrite development. To compare dendrite morphology of
DG granule cells in Sorbs2 KO and WT mice, we developed a
viral-based method to sparsely and clearly label neuronal den-
drites and spines with EGFP (Fig. 5G,L). We performed intrave-
nous injections of P14 Sorbs2 KO and WT mice with AAV
expressing both cytoplasmic EGFP and membrane-targeting
EGFPf under the control of human synapsin-1 promoter (pAAV-
hSyn1-EGFP-p2A-EGFPf) (further described in Materials and
Methods). Characterization of dendrite morphology based on
EGFP/EGFPf expression 3 weeks later revealed clear sparse visu-
alization of DG granule cell dendrite (Fig. 5G) and dendritic
spine morphology (Fig. 5L). Using this labeling method, we
found that dendritic trees of DG granule cells were much less
complex in Sorbs2 KO mice compared with those of WT mice, as
revealed by Sholl analysis (Fig. 5H, I). Additionally, total den-
dritic length (WT: 1491 
 60.01 �m, n � 17; KO: 1068 
 48.56
�m, n � 22; p � 0.0001; Fig. 5J) and number of dendritic branch

points (WT: 9.2 
 0.3, n � 17; KO: 6.7 
 0.4, n � 22; p � 0.0001;
Fig. 5K) were all significantly reduced in Sorbs2 KO mice. Both
male and female mice had a similar trend of reduction in DG
granule cell dendritic complexity (data not shown). We also char-
acterized the density and shape of dendritic spines in the DG
molecular layer but did not observe significant differences be-
tween genotypes (Fig. 5L,M). Together, these results indicate
that nArgBP2 plays an important role in dendritic development
of DG granule cells.

Excitatory synaptic transmission in DG is reduced in Sorbs2
KO mice
To determine the functional consequences of nArgBP2 defi-
ciency on synaptic transmission in DG granule cells, we per-
formed whole-cell patch-clamp recording in DG granule cells
from acute slices of 5-week-old mice. To study the baseline spon-
taneous activity of those cells, we examined the frequency and

Figure 3. Generation of Sorbs2 floxed and KO mutant mice. A, Exon 12 that encodes part of the Sorb domain was selected for targeting. Thymidine kinase driven by mouse phosphoglycerate
kinase 1 promoter (pGK-TK) was used for negative selection; neomycin resistance gene driven by the SV40 promoter (SV40-Neo) was used for positive selection. Transgenic mice expressing germline
transmittable FLP and Cre recombinase were crossed with mice containing the Sorbs2 recombinant allele to generate Sorbs2 floxed allele (F) and KO allele (�). Primers F1, R1, and R2 were combined
for detecting Sorbs2 mutants and WT. B, PCR genotyping for Sorbs2 mutants and WT mice. C, Immunoblots show the complete absence of ArgBP2 and nArgBP2 proteins in heart and brain tissues
from Sorbs2 KO mice. Left, Anti-Sorbs2C antibody recognizes both ArgBP2 (black arrow) and nArgBP2 (open arrows). Bottom, Anti-� tubulin antibody reveals that similar amounts of proteins were
loaded between genotypes. Right, Same amount of tissue homogenates was also probed with anti-Sorbs2NSE antibody. Bands labeled by asterisks were recognized by anti-Sorbs2NSE antibody in
both genotypes but not detected by anti-Sorbs2C antibody, suggesting that they were nonspecific signals. D, Immunoblots show that nArgBP2 is exclusively expressed in neuronal cultures, whereas
ArgBP2 is only detected in astroglial cells. Both nArgBP2 and ArgBP2 were depleted from neuronal and astroglial cultures derived from Sorbs2 KO mice. Antibodies against synaptophysin and GFAP
were used as markers for neurons and astrocytes, respectively. Anti-GAPDH antibody revealed that similar amounts of proteins were loaded for each lane.
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amplitude of AMPAR-mediated spontaneous miniature EPSCs
(mEPSCs) of DG granule cells from Sorbs2 KO and WT litter-
mates. AMPAR-mEPSCs were recorded with bath application of
picrotoxin (100 �M), DL-APV (50 �M), and TTX (1 �M) to block
GABA receptor-mediated inhibitory currents, NMDA receptor-
and action potential-dependent synaptic transmission, respec-
tively. As shown in Figure 6A–C, the mean frequency of mEPSCs
in Sorbs2 KO mice was significantly reduced compared with that

of WT littermates (WT: 1.33 
 0.10 Hz,
n � 26; KO: 0.71 
 0.05 Hz, n � 25; p �
0.001; Fig. 6C), whereas the mean fre-
quency of mEPSCs in Sorbs2 Het mice was
not changed compared with the WT lit-
termates (Het: 1.19 
 0.09 Hz, n � 8; p �
0.4457; Fig. 6C). In contrast, the ampli-
tude of the mEPSCs in Sorbs2 KO and Het
mice was similar to that of WT littermates
(WT: 12.41 
 0.31 pA, n � 25; KO:
12.81 
 0.34 pA, n � 26; Het: 13.26 

0.81 pA, n � 8; KO vs WT: p � 0.3906;
Het vs WT: p � 0.2426; Fig. 6D). The re-
duction in mEPSC frequency suggests
either reduced presynaptic release proba-
bility or decreased number of functional
synapses in DG granule cells from Sorbs2
KO mice.

Because we showed that nArgBP2 is
highly enriched in the outer one-third of
molecular layer in DG (Fig. 2B–E), which is
mainly innervated by lateral perforant path
(LPP) input from the lateral entorhinal cor-
tex (Witter, 2007), we chose to focus on the
LPP-DG pathway to determine whether
Sorbs2 deletion affects presynaptic release
probability. We measured PPR, a short pre-
synaptic form of synaptic plasticity, from
LPP input to DG granule cells in brain slices
derived from Sorbs2 KO mice at interpulse
intervals of 50 ms. The PPR was comparable
between Sorbs2 KO and WT littermates
(WT: 1.30 
 0.07, n � 8; KO: 1.29 
 0.08,
n � 9; p � 0.9978; Fig. 6E–G), suggesting
that the presynaptic glutamate release prob-
ability of LPP was not altered in Sorbs2 KO
granule cells. Together with the observa-
tions of enrichment of nArgBP2 at dendritic
spines (Figs. 1, Fig. 5A–F) and reduced den-
dritic complexity of DG neurons in Sorbs2
KO mice (Fig. 5H–K), our finding of the
decreased frequency of mEPSCs in Sorbs2
KO granule cells suggests a decrease in the
total number of functional synapses onto
KO neurons.

Sorbs2 KO mice exhibit normal long-
term synaptic plasticity in DG
Long-term synaptic plasticity (LTP/LTD)
in hippocampus serves as a molecular
substrate for learning and memory pro-
cesses in the CNS (Bliss and Collingridge,
1993). We thus assessed the effects of
Sorbs2 deletion on LTP and LTD in the
LPP input to the DG ex vivo. LTP was elic-

ited by applying a burst electrical stimulation (20 bursts, sepa-
rated by intervals of 500 ms, with each burst containing four
stimuli at 100 Hz) of the LPP-DG input. As shown in Figure 6H,
WT and Sorbs2 KO mice showed a similar level of LTP (WT:
129 
 4%, n � 8; KO: 135 
 5%, n � 9; p � 0.7978, two-way
ANOVA test; Fig. 6H) that lasted for �40 min after the burst
stimulation. We then examined the effects of Sorbs2 deletion on
LTD using a low-frequency stimulation protocol (1 Hz, 900

Figure 4. Normal brain morphology and unaltered lamination of cortex and DG molecular layer in Sorbs2 KO mice. A, NeuN
immunohistochemistry of coronal and sagittal sections from 3-month-old WT and Sorbs2 KO mice. B, Immunofluorescent staining
of cortical layer marker Ctip2 (layer 5 and 6) and Brn2 (layer 2/3 and 5) revealed similar expression patterns in WT and Sorbs2 KO
mice. C, NetrinG1, NetrinG2, and calretinin immunostaining of DG molecular layers in WT and Sorbs2 KO mice.

Zhang et al. • Sorbs2 KO Impairs Dendritic Complexity and Memory J. Neurosci., February 17, 2016 • 36(7):2247–2260 • 2255



pulses, LFS). As shown in Figure 6I, we did
not observe statistically significant dif-
ferences in LTD between WT and Sorbs2
KO mice, although a small trend of
higher level of LTD was observed in
Sorbs2 KO mice (WT: 72 
 3%, n � 11;
KO: 64 
 4%, n � 11; p � 0.1605, two-
way ANOVA test; Fig. 6I ).

Sorbs2 deletion impaired acoustic
startle response and memory in mice
Because mutations of SORBS2 have been
linked with ID (Rossi et al., 2009; Fromer et
al., 2014; Castellani et al., 2015), we investi-
gated whether Sorbs2 KO mice have any be-
havioral deficits that may be related to this
disorder. To avoid a possible confound of
the estrous cycle on the performance of ro-
dent behaviors (Markus and Zecevic, 1997;
Jasnow et al., 2006; van Goethem et al.,
2012), we limited our behavioral analysis to
male 2.5- to 4-month-old WT and Sorbs2
KO littermates. Sorbs2 KO and WT mice
were first subjected to open-field and ele-
vated zero-maze tests. As shown in Figure
7A, B, the locomotion activity and anxiety
level were comparable between genotypes.

Deficits in sensorimotor gating are com-
mon in neurodevelopmental disorders
(Osumi et al., 2015). In addition, SORBS2 de
novo mutations have also been found in
schizophrenia patients (Fromer et al., 2014),
which often have sensorimotor gating deficits
as measured by PPI. Interestingly, we found
that, in the acoustic PPI test, the performance
of Sorbs2 KO mice was significantly impaired
(Fig. 7D). However, interpretation of PPI def-
icits in Sorbs2 KO mice is complicated by the
profound defects also found in acoustic startle
response test (Fig. 7C).

Learning and memory deficits are com-
mon recognizable manifestations of ID
(American Psychiatric Association, 2013).
Based on the high expression of nArgBP2 in
the cortex, amygdala, and DG, we chose the
novel object recognition test (Antunes and
Biala, 2012), toned fear conditioning test,
contextual fear conditioning test, Morris
water maze test, and operant visuospatial
discrimination test (Krueger et al., 2011) to
characterize cognitive function and learning
and memory abilities of Sorbs2 KO mice.

The novel object recognition test was
performed as illustrated in Figure 7E. Mice were first exposed to two
identical objects (T1 and T2) for 10 min, allowing them to get famil-
iar with the objects. After a 10 min delay, one of the familiarized
objects (T1/T2) was replaced with a novel object (N1), and mice
were tested for their short-term object recognition memory. To as-
sess long-term object recognition memory, a third novel object (N2)
was introduced to replace object N1 at tests 24 h later. Normally, the
WT mice are capable of differentiating novel objects from familiar
ones and tend to explore novel ones for longer. As shown in Figure
7F, 10 min after the familiarization session, Sorbs2 KO mice per-

formed similarly to WT mice, and both showed significant prefer-
ence to the novel object (WT: 67.21 
 2.51%, n � 15; KO: 66.56 

2.43%, n � 16; p � 0.8547); however, compared with WT, Sorbs2
KO mice showed significantly less preference for the new object after
a 24 h delay (WT: 64.04 
 3.54%, n � 15; KO: 54.52 
 2.93%, n �
16; p � 0.05; Fig. 7G). These results suggest that long-term, but not
short-term, object recognition memory was affected in Sorbs2 KO
mice.

We next assessed contextual memory by subjecting Sorbs2 KO
mice into a contextual fear conditioning test. During the training

Figure 5. nArgBP2 is required for normal dendritic development of DG granule cells. A–F, Lentiviral expression of iCre recom-
binase in DG granule cells of Sorbs2 floxed mice (F/�, one floxed allele, and one KO allele) specifically removed the laminated
expression of nArgBP2 in the DG molecular layer (D–F ). White dotted line and arrowheads indicate the DG region where iCre was
expressed. Lentiviral expression of EGFP had no effect on nArgBP2 expression (A–C). G, AAV-EGFP-P2A-EGFPf sparsely labeled DG
granule cells after intravenous injection. H, Representative images of DG granule cells that were traced according to EGFP/EGFPf
expression. I, Sholl analysis indicates reduced dendritic complexity in Sorbs2 KO mice (two-way ANOVA, shell radius � genotype:
interaction, p � 0.0001; effect of genotype, p � 0.0001; effect of shell radius, p � 0.0001. Bonferroni post hoc test: *p � 0.05,
***p � 0.0001; WT: n � 17 neurons of 4 mice, KO: n � 22 neurons of 5 mice). J, Total dendritic length (WT: 1491 
 60.01 �m;
KO: 1068 
 48.56 �m; two-tailed t test, ***p � 0.0001) and (K ) number of nodes (WT: 9.2 
 0.3; KO: 6.7 
 0.4; two-tailed t
test, ***p � 0.0001) were also dramatically reduced in KO mice. L, Representative images of dendritic spines of DG granule cells
from WT and KO mice. White arrows indicate mushroom spines. Red arrows indicate stubby spines. Green arrows indicate thin
spines. M, Statistics of spine density revealed no significant differences across genotypes. Error bars indicate standard error of the
mean (SEM).
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phase, Sorbs2 KO mice showed similar levels of freezing behavior
as WT littermates after being conditioned to aversive electrical
shocks (Fig. 7H). However, when mice were returned to the same
context 24 h after training, Sorbs2 KO mice showed significantly
less freezing time than WT littermates (WT: 33.41 
 3.04%, n �
15; KO: 21.61 
 3.35%, n � 14; p � 0.05; Fig. 7I), suggesting that
contextual fear memory was impaired in Sorbs2 KO mice. Inter-
estingly, the performances of Sorbs2 KO mice in the toned fear
conditioning test and Morris water maze test were indistinguish-
able from WT littermate controls (Fig. 7J–M), suggesting that
cued fear memory and spatial memory were not affected by the

loss of Sorbs2 in mice. In addition, Sorbs2 KO mice behaved sim-
ilarly as WT mice in the acquisition of a visuospatial discrimina-
tion task (data not shown). Together, these results suggest that
Sorbs2 KO mice have defects in a subset of cognitive and learning/
memory tests.

Discussion
Chromosome 4q35 microdeletions/microduplications that cover
SORBS2 gene have been found in patients with ID (Rossi et al.,
2009). Because these deletions/duplications affect multiple genes,
it is unknown whether SORBS2 deficiency contributes to neuro-

Figure 6. Decreased frequency of mEPSCs in DG granule cells from Sorbs2 KO mice. A, B, Representative traces showing mEPSCs of DG granule cells from WT and Sorbs2 KO mice, respectively. C,
D, Summarized data demonstrating the reduction in frequency but not amplitude of mEPSCs in Sorbs2 KO mice (WT: n � 26 of 6 mice, HET: n � 8 of 3 mice; KO: n � 25 of 6 mice). ***p � 0.0001
(one-way ANOVA with Bonferroni’s post hoc analysis). E, Representative hippocampal DG slice showing the position of the concentric bipolar stimulating electrode for the stimulation of the LPP. F,
Representative traces of evoked EPSCs of DG granule cells from WT and Sorbs2 KO mice upon paired-pulse stimulation (paired stimuli pulses of 50 ms interval) of the LPP. G, The paired-pulse ratio
in slices of Sorbs2 KO mice was not different from that of WT mice. p � 0.9978 (two-tailed t test). H, LTP induced by burst high-frequency stimulation (HFS) in slices was comparable between WT
and Sorbs2 KO mice. I, Similar level of LTD were induced in slices from WT and Sorbs2 KO mice by 900 pulses stimulation delivered at 1 Hz interval. Error bars indicate SEM.
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nal development and ID. We report here, for the first time, that
loss of Sorbs2 in mice led to reduced dendritic complexity, de-
creased excitatory synaptic transmission, impaired acoustic star-
tle response, and defective long-term memory. These findings

indicate that SORBS2 plays an important role in dendritic devel-
opment and memory formation. Meanwhile, SORBS2 is also
linked to congenital heart disease and cancer metastasis (Roignot
and Soubeyran, 2009; Geng et al., 2014), which are likely related

Figure 7. Behavioral characterization of Sorbs2 KO mice. A, Locomotion activity in open-field test and (B) anxiety level in elevated-zero maze test were similar between Sorbs2 KO and WT mice.
C, Sorbs2 KO mice showed dramatically reduced response to stimuli in the acoustic startle response test (two-way ANOVA, startle stimulus volume � genotype: interaction, p � 0.0001; effect of
genotype, p � 0.0001; effect of startle stimulus volume, p � 0.0001; Bonferroni post hoc test: ***p � 0.0001; WT: n � 13, KO: n � 12). D, PPI is significantly impaired in Sorbs2 KO mice (two-way
ANOVA, prepulse stimulus volume � genotype: interaction, p � 0.0001; effect of genotype, p � 0.0677; effect of prepulse stimulus volume, p � 0.0001; Bonferroni post hoc test: **p � 0.01,
***p � 0.0001). E, Scheme of novel object recognition (NOR) test. Two identical objects (T1 and T2) were used in the training session, and two different novel objects N1 or N2 were exposed to mice
in the test session 10 min or 24 h after training to assess short-term (10 min) or long-term (24 h) object recognition memory, respectively. F, Short-term object recognition memory is intact in Sorbs2
KO mice (WT: 67.21 
 2.51%, n � 15; KO: 66.56 
 2.43%, n � 16; two-tailed t test, p � 0.8547). G, Long-term object recognition memory is impaired in Sorbs2 KO mice (WT: 64.04 
 3.54%,
n � 15; KO: 54.52 
 2.93%, n � 16; two-tailed t test, *p � 0.05). H, Sorbs2 KO mice behaved similarly as WT during the training of contextual fear conditioning (CFC) task. Percentages of freezing
time per 30 s bin across the training were compared between genotypes. Arrows indicate the delivery of footshocks. I, Sorbs2 KO mice showed reduced freezing time in CFC test (WT: 33.41 
 3.04%,
n � 15; KO: 21.61 
 3.35%, n � 14; two-tailed t test, *p � 0.05). J, K, WT and Sorbs2 KO mice behaved similarly during the training (J ) and the memory test (K ) of toned fear conditioning (TFC)
task. B, Baseline; T1–T5 indicate the presence of tones; ITI, intertrial interval. Arrows indicate the delivery of footshocks. L, M, Sorbs2 KO mice showed normal spatial learning and memory as WT mice
in Morris water maze test. T, Target quadrant; L, adjacent left quadrant; R, adjacent right quadrant; O, opposite quadrant. Error bars indicate SEM.
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to the functions of non-neuronal ArgBP2 isoforms. Thus, Sorbs2
mutant mice could be a useful tool to investigate ArgBP2 func-
tion in cardiology and oncology research.

nArgBP2, as the only neuronal isoform coded by the Sorbs2
gene, is highly expressed in dendritic growth cones and spines of
cultured neurons. In support of nArgBP2 localization at den-
dritic growth cones in vivo, we observed enriched nArgBP2 local-
ization in the outer one-third of the molecular layer of the DG
during development, which corresponds to the location of out-
growing tips of DG granule cell dendrites (Rahimi and Claiborne,
2007). In Sorbs2 KO mice, we found that the dendritic complexity
of DG granule cells was dramatically reduced (Fig. 5H–K),
whereas the lamination of the DG molecular layer (Fig. 4C) and
spine density of OML (Fig. 5L,M) were all comparable with WT.
These results argue for a critical role of nArgBP2 in dendritic
development of DG granule cells. Interestingly, reduced den-
dritic complexity phenotype of DG granule cells has also been
observed in several other mouse models for intellectual disability
(Chen et al., 2012; Powell et al., 2012; Dang et al., 2014), suggest-
ing that defects in dendritic development might be a potential
common pathology.

ArgBP2/nArgBP2 has been reported to interact with multiple
actin regulatory proteins, including Arg, c-Abl, Vinculin, Paxil-
lin, WAVE, c-Cbl, Pyk2, PKB, PAK1, �-actinin, 14-3-3, and
SAPAP (Wang et al., 1997; Kawabe et al., 1999; Haglund et al.,
2004; Cestra et al., 2005; Rönty et al., 2005; Yuan et al., 2005;
Anekal et al., 2015), which can be generally grouped into
cell adhesion molecules and regulators and effectors of small
GTPases. Among them, Paxillin is a signal transduction adaptor
protein that recruits regulatory and structural proteins to cell
adhesion sites that bind to the extracellular matrix (Deakin and
Turner, 2008). Previous studies reported that Paxillin localiza-
tion and phosphorylation, which are critical for its function, were
impaired by overexpression or knockdown of ArgBP2 in non-
neuronal cells (Cestra et al., 2005; Martin et al., 2013). It is pos-
sible that this interaction of ArgBP2 and Paxillin, direct or
indirect, may play a similar role in neuronal cells. Another im-
portant signaling pathway regulating dendritic development is
the small GTPase, such as Rho and Rac. Rac activation promotes
dendrite growth and branching, whereas Rho activation inhibits
dendritic development (Negishi and Katoh, 2005; Vadodaria et
al., 2013). The ArgBP2/nArgBP2 interaction partner Cbl and Arg
have been reported to regulate Rac and RhoA activities, respec-
tively (Scaife et al., 2003; Sfakianos et al., 2007). Therefore, future
studies of Rac and RhoA activities in Sorbs2 KO mice may eluci-
date how nArgBP2 might coordinate these two signaling path-
ways during dendritic development. Additionally, our study
showed that the NSE of Sorbs2 gene can promote nArgBP2 tar-
geting into dendritic spines. Thus, the identification of binding
partners to this exon in future studies may provide new insights
into the unique function of nArgBP2 in the brain.

nArgBP2 is highly expressed in many brain regions, including
cortex, amygdala, and DG. We noticed that Sorbs2 KO mice showed
a specific deficit in contextual fear memory but not in toned fear
memory, suggesting that nArgBP2 may play a more important role
in hippocampus than in the amygdala (Phillips and LeDoux, 1992;
Maren et al., 2013). Although our current cellular and electrophysi-
ological studies were focused on the DG, some of the behavioral
defects, such as novel object recognition and sensorimotor gating,
could also involve cortical dysfunction. Future studies combining
Sorbs2 floxed mice with regional and cell-type specific expression of
Cre recombinase will be able to dissect the neural circuits underlying
these behavioral phenotypes.
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