Gephyrin-Independent Clustering of Postsynaptic GABA_A Receptor Subtypes

Matthias Kneussel,* Johann Helmut Brandstätter,[†] Bruno Gasnier,[‡] Guoping Feng,[§] Joshua R. Sanes,[§] and Heinrich Betz^{*,1}

*Department of Neurochemistry and [†]Department of Neuroanatomy, Max Planck Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt/Main, Germany; [‡]Institut de Biologie Physico-Chimique, CNRS 6 UPR 1929, 13 rue Pierre et Marie Curie, 75005 Paris, France; and [§]Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110

Gephyrin has been shown to be essential for the synaptic localization of the inhibitory glycine receptor and major GABA_A receptor (GABA_AR) subtypes. However, in retina certain GABA_AR subunits are found at synaptic sites in the absence of gephyrin. Here, we guantitatively analyzed GABA_AR α 1, α 2, α 3, α 5, β 2/3, and γ 2 subunit immunoreactivities in spinal cord sections derived from wild-type and gephyrin-deficient (geph -/-) mice. The punctate staining of GABA_AR α 1 and α 5 subunits was unaltered in geph -/- mice, whereas the numbers of α^2 -, α^3 -, $\beta^2/3$ -, and γ 2-subunit-immunoreactive synaptic sites were significantly or even strikingly reduced in the mutant animals. Immunostaining with an antibody specific for the vesicular inhibitory amino acid transporter revealed that the number of inhibitory presynaptic terminals is unaltered upon gephyrin deficiency. These data show that in addition to gephyrin other clustering proteins must exist that mediate the synaptic localization of selected GABA_AR subtypes.

INTRODUCTION

A high density of neurotransmitter receptors in the postsynaptic membrane is essential for fast synaptic transmission between neurons. The targeting of such receptors to and their clustering at developing postsynaptic sites involve receptor-associated proteins and cytoskeletal elements that are highly concentrated at

postsynaptic densities (PSDs)² (Sheng, 1996; Craven and Bredt, 1998). At excitatory PSDs, PDZ-domain-mediated protein interactions have been shown to generate a scaffold for different structural proteins and regulatory enzymes involved in synaptic signaling (Sheng, 1996; Craven and Bredt, 1998), whereas at inhibitory synapses the tubulin-binding protein gephyrin is known to play an essential role in the synaptic localization of both glycine receptors (GlyRs) and GABA_A receptors (GABA_ARs) (reviewed in Kneussel and Betz, 2000a; Sassoe-Pognetto and Fritschy, 2000).

Gephyrin, a 93-kDa polypeptide that was originally identified by copurification with the mammalian GlyR (Pfeiffer *et al.*, 1982; Schmitt *et al.*, 1987), directly interacts with both the GlyR β subunit (Meyer *et al.*, 1995; Kneussel *et al.*, 1999a) and polymerized tubulin (Kirsch *et al.*, 1991), thus serving as a GlyR–cytoskeleton linker (Kirsch and Betz, 1995). Immunoelectron microscopy on neurons in the spinal cord, the cochlear nucleus, and the retina has shown that gephyrin colocalizes with GlyRs precisely at the postsynaptic membrane (Triller *et al.*, 1985; Altschuler *et al.*, 1986; Sassoe-Pognetto *et al.*, 1997). Gephyrin is also highly enriched at most GABAergic synapses (Triller *et al.*, 1987; Bohlhalter *et al.*, 1994; Cabot *et al.*, 1995; Sassoe-Pognetto *et al.*, 1995; Craig *et al.*, 1996; Todd *et al.*, 1996; Giustetto *et al.*, 1998).

 $^{^{\}rm 1}$ To whom correspondence and reprint requests should be addressed. Fax: ++49-69-96769-441. E-mail: Kneussel@mpih-frankfurt. mpg.de.

² Abbreviations used: CNS, central nervous system; GABA, γ-aminobutyric acid; geph, gephyrin; GlyR, glycine receptor; GABA_AR, GABA_A receptor; PSD, postsynaptic density; PDZ, postsynaptic density, <u>discs large, z</u>onula adherens; VIAAT, vesicular inhibitory amino acid transporter.

Consistent with a general function in inhibitory neurotransmitter receptor clustering and anchoring, the loss of gephyrin expression resulting from either antisense depletion (Kirsch et al., 1993; Essrich et al., 1998) or gene knockout in mice (Feng et al., 1998) prevents the formation of all clusters of the GlyR (Feng et al., 1998; Fischer et al., 2000) and of GABA Rs containing the abundant α^2 and/or γ^2 subunits (Essrich et al., 1998; Kneussel et al., 1999b). However, in contrast to results obtained for the GlyR, gephyrin does not copurify with GABA_ARs (Meyer et al., 1995), and transfection experiments have failed to provide evidence for a direct interaction of gephyrin with major GABA_AR subunits (Kirsch et al., 1996). Therefore specific GABA_AR–gephyrin linker proteins have been proposed to exist (Essrich et al., 1998; Kneussel et al., 1999b). An attractive candidate for such a linker protein has been the putative GABA_AR clustering protein GABARAP (for GABA_AR-associated protein; Wang et al., 1999). Indeed, GABARAP interacts with gephyrin but is not found at gephyrin-positive GABAergic synapses (Kneussel et al., 2000). The identity of the protein(s) immobilizing GABA_ARs on postsynaptic gephyrin clusters thus remains enigmatic (Kirsch and Betz, 1998; Kneussel and Betz, 2000b).

Further complexity of the processes that localize inhibitory neurotransmitter receptors at postsynaptic sites emerges from GABA_ARs comprising a highly heterogeneous set of membrane proteins that are differentially expressed in the mammalian CNS (Wisden et al., 1992; Laurie et al., 1992a,b; Fritschy and Möhler, 1995). Studies on GABA_AR clustering in various regions of the CNS of wild-type and gephyrin-deficient (geph -/-) mice have disclosed significant differences in the synaptic localization of the major GABA_AR subunits α 2 and γ 2. In particular, in geph -/- hippocampal cultures and spinal cord, an almost complete loss of punctate staining has been reported (Kneussel et al., 1999b). In contrast, in organotypic retinal cultures GABA_AR clusters containing the subunits $\alpha 2$, $\alpha 3$, and/or $\gamma 2$ develop in the absence of gephyrin (Fischer et al., 2000). These observations point to a differential regulation of GABA_AR clustering that might involve receptor subtype- and neuron-specific mechanisms which act independently of gephyrin deposition at developing postsynaptic sites. Consistent with this view, in differentiating spinal neurons the formation of a gephyrin scaffold has been found to precede (Kirsch et al., 1993; Bechade et al., 1996) but not to be sufficient for (Levi et al., 1999) GlyR and GABA_AR clustering.

In this study, we compared the synaptic localization of the GABA_AR subunits $\alpha 1$, $\alpha 2$, $\alpha 3$, $\alpha 5$, $\beta 2/3$, and $\gamma 2$ in spinal cord sections derived from wild-type and gephy-

rin-deficient mice. We report that GABA_ARs containing the α 1 and α 5 subunits are fully synaptically localized in gephyrin-deficient animals whereas the number of α 2-, α 3-, β 2/3-, and γ 2-subunit-immunoreactive puncta is significantly or dramatically reduced. This reduction cannot be attributed to a loss of inhibitory nerve terminals, since their density as revealed by staining with an antibody specific for the vesicular inhibitory amino acid transporter (VIAAT) is not altered in the spinal cord of the mutant animals. Our results unravel novel subunitspecific differences in GABA_AR cluster formation and support the notion (Kirsch and Betz, 1998; Levi *et al.*, 1999; Kneussel *et al.*, 2000b; Fischer *et al.*, 2000) that additional GABA_AR clustering proteins must exist.

RESULTS

In order to evaluate whether gephyrin is required for the postsynaptic localization of non- α 2 and non- γ 2 GABA_ARs, we examined spinal cord sections from E19.5 wild-type and *geph* -/- mouse embryos by immunocytochemistry using antibodies specific for the GABA_AR subunits α 1, α 3, α 5, and β 2/3 and compared these results with those obtained in parallel stainings of the α 2 and γ 2 subunits. In addition, the distribution of inhibitory presynaptic terminals was evaluated by using a VIAAT-specific antibody that decorates glycineand GABA-containing synaptic vesicles (Dumoulin *et al.*, 1999).

The Density of Inhibitory Presynaptic Terminals Is Not Reduced in Spinal Cord of geph –/– Mice, and Inhibitory Terminals Are Not Misrouted to Other Postsynaptic Sites upon the Loss of Most Inhibitory Receptor Clusters

Gephyrin-deficient mice display a lethal phenotype (Feng *et al.*, 1998) and show a loss of postsynaptic clustering for the majority of inhibitory neurotransmitter receptors in the CNS (Feng *et al.*, 1998; Kneussel *et al.*, 1999b; Fischer *et al.*, 2000). To exclude the possibility that this might reflect reduced inhibitory innervation, we determined the density of inhibitory presynaptic terminals in spinal cord sections from E19.5 *geph* -/- mice by VIAAT staining and compared these values with those found in age-matched wild-type tissue (Fig. 1A). The resulting density values of 193.1 \pm 4.7 VIAAT-immunoreactive puncta per 50 μ m² for *geph* -/- tissue and of 190.1 \pm 4.2 such puncta per 50 μ m² in wild-type

FIG. 1. Analysis of inhibitory presynaptic terminal density and localization by VIAAT immunolabeling. (A) Comparison of the density of VIAAT-immunoreactive terminals in spinal cord sections derived from wild-type and *geph* -/- mice. Values represent total numbers of VIAAT-positive puncta per 50 μ m² as determined in different experiments [n(+/+) = 8555 puncta, n(-/-) = 8688 puncta]. (B, C) Double-immunostaining of VIAAT-positive inhibitory terminals and the postsynaptic density protein PSD-95, exclusively located at excitatory postsynaptic sites. VIAAT-positive inhibitory terminals do not colocalize with PSD-95 in wild-type (+/+) spinal cord tissue (B). Note that despite a major loss of postsynaptic inhibitory neurotransmitter receptors in gephyrin knockout mice (-/-), VIAAT-positive inhibitory terminals are not misrouted to excitatory postsynaptic sites, as represented by separated immunoreactivities (C). Scale bar, 10 μ m.

sections indicate that the density of inhibitory presynaptic terminals is not altered upon inactivation of the gephyrin gene.

In cultured autaptic hippocampal neurons, excitatory nerve terminals have been reported to be incorrectly apposed to gephyrin-positive inhibitory postsynaptic membrane specializations (Rao et al., 2000). To examine whether inhibitory nerve terminals might be misrouted to excitatory postsynaptic sites in gephyrin-deficient mice, we also performed double-immunolabeling of spinal cord sections for both VIAAT and PSD-95 (for postsynaptic density protein, 95 kDa), an established marker of glutamatergic postsynaptic densities (Kennedy, 1997). In both wild-type and geph -/- animals, individual immunoreactivities were found at distinct non-overlapping sites (Figs. 1B and 1C). We therefore conclude that the loss of the majority of postsynaptic inhibitory receptor clusters in gephyrindeficient animals does not result in misrouting of inhibitory nerve terminals, as seen with autaptic glutamatergic hippocampal neurons in vitro.

The Number of Immunoreactive Puncta of the $GABA_{A}R$ Subunits $\alpha 1$ and $\alpha 5$ Is Not Reduced in Spinal Cord of geph -/- Mice

Immunoreactive puncta of the GABA_A receptor subunits $\alpha 1$ and $\alpha 5$ were compared using E19.5 spinal cord sections prepared from wild-type and geph -/- mice. Both subunits show distinct expression patterns in certain layers of the dorsal horn of rodent spinal cord (Bohlhalter et al., 1996). In several experiments, no differences in synaptic immunostaining for the $\alpha 1$ and $\alpha 5$ subunits were detected when comparing wild-type and geph -/- sections (Fig. 2). Quantification of the numbers of synaptic puncta per 50- μ m² section area for the individual genotypes revealed density values of 109.8 \pm 4.9 for the α 1 subunit in geph -/- tissue compared to 108.2 \pm 4.9 in wild-type tissue (Table 1). For the $\alpha 5$ subunit, 206.0 \pm 13.1 puncta per 50- μ m² section area were obtained in geph -/- tissue compared to 191.0 \pm 6.7 puncta in wild-type tissue (Table 1). This corresponds to relative receptor cluster densi-

FIG. 2. Immunostaining of postsynaptic GABA_AR clusters in spinal cord sections of wild-type and *geph* -/- mice. Sections were stained with α 1- and α 5-specific antibodies. Note that the punctate staining of sections derived from the homozygous mutants is not altered. Scale bar, 20 μ m.

ties in geph -/- animals of 101.5 \pm 4.5 and 107.9 \pm 6.8% of the wild-type values for α 1 and α 5, respectively. We therefore conclude that the GABA_A receptor isoforms containing the α 1 and/or α 5 subunits do not depend on the receptor-anchoring protein gephyrin for clustering at putative postsynaptic sites.

TABLE 1

Quantification of Punctate GABA_AR and NMDAR1 Subunit Immunoreactivities in Spinal Cord Sections Derived from Wild-type and *geph* -/- Mice

Subunit immunoreactivity	Number of puncta/50 μ m ²		Relative synapse density
	geph + / +	geph -/-	(% wild type)
$GABA_AR \alpha 1$	108.2 ± 4.9	109.8 ± 4.9	101.5 ± 4.5
$GABA_AR \alpha 2$	221.4 ± 6.1	$34.3 \pm 3.1^{*}$	$15.5\pm1.4^*$
$GABA_AR \alpha 3$	239.4 ± 12.3	$181.0 \pm 10.1^{*}$	$75.6\pm4.2^*$
$GABA_AR \alpha 5$	191.0 ± 6.7	206.0 ± 13.1	107.9 ± 6.8
$GABA_AR \beta 2/3$	137.2 ± 10.7	$52.4 \pm 6.0^{*}$	$38.2 \pm 4.4^{*}$
$GABA_AR \gamma 2$	257.5 ± 9.5	$38.0 \pm 4.1^{*}$	$14.8 \pm 1.6^*$
NMDAR 1	390.3 ± 12.6	396.8 ± 16.4	101.7 ± 4.2

Note. Values represent numbers of immunoreactive puncta per 50 μ m² as determined in different (n = 3) experiments. For the subunits α 1 and α 5, which display restricted expression in certain spinal cord layers (Bohlhalter *et al.*, 1996), areas with the highest abundance were used for analysis. Data are normalized to the mean values (100%) obtained with wild-type samples. SEM (standard error of the mean) values are indicated ($n: \alpha 1 = 1090, \alpha 2 = 1532, \alpha 3 = 2102, \alpha 5 = 1191, \beta 2/3 = 948, \gamma 2 = 1735, NR1 = 4326$). Asterisks indicate statistically significant differences between the two genotypes (*P* values <0.01).

Previously, we showed that the distribution of several markers of glutamatergic postsynaptic sites, including the AMPA receptor GluR1 and GluR2/3 subunits, the postsynaptic density protein PSD-95, and the principal NMDA receptor subunit NMDAR1, is not detectably altered in geph -/- neurons (Feng et al., 1998; Kneussel et al., 1999b). For quantitative evaluations, spinal cord sections stained for the NMDAR1 subunit were also examined in this study. This revealed an average density of 396.8 \pm 16.4 puncta per 50- μ m² section area in geph -/- tissue compared to 390.3 \pm 12.6 puncta in wild-type tissue (Table 1) and corresponds to a relative receptor cluster density of 101.7 \pm 4.2% in geph -/- animals. These data corroborate our previous conclusions (Feng et al., 1998; Kneussel et al., 1999b) and show that the average density of NMDA receptor clusters in E19.5 spinal cord sections is significantly higher than that of GABA_AR clusters.

Clustering of GABA_ARs Containing the α 3 and/or β 2/3 Subunits Is Impaired in Spinal Cord of geph –/– Mice

In spinal cord, the α 3 subunit is abundantly expressed in all layers of the dorsal horn (Bohlhalter *et al.*, 1996). Upon staining with an α 3-subunit-specific antibody, the number of immunoreactive puncta was significantly lower in *geph* -/- mice than in wild-type tissue (Fig. 3).

FIG. 3. Immunostaining of postsynaptic GABA_AR receptor clusters in spinal cord sections of wild-type and *geph* -/- mice. Sections were stained with α 3- and β 2/3-specific antibodies. The punctate staining of sections derived from homozygous mutants was partially reduced for α 3 and strongly reduced for β 2/3. Scale bar, 20 μ m.

Quantification in tissue sections of the individual genotypes revealed density values of 181.0 ± 10.1 puncta per $50 \ \mu \text{m}^2$ for geph -/- tissue compared to 239.4 ± 12.3 puncta found per 50 μ m² in wild-type sections (Table 1). This represents an average reduction in GABA_AR α 3 subunit cluster density to $75.6 \pm 4.2\%$ of that in wild-type tissue. When an antibody recognizing the GABA_A receptor subunits $\beta 2/3$ was used for immunostaining, an even more drastic alteration in synaptic staining was obtained. The number of $\beta 2/3$ -subunit-immunoreactive puncta, whose wide distribution in the cervical spinal cord resembles that of the $\gamma 2$ subunit (Bohlhalter et al., 1996), was strikingly lowered in geph -/- tissue (Fig. 3). Determination of the number of puncta per $50-\mu m^2$ area in the individual genotypes revealed density values of 52.4 ± 6.0 puncta per 50 μ m² for geph -/- tissue compared to 137.2 \pm 10.7 puncta found per 50 μ m² in wild-type tissue (Table 1). This corresponds to a reduction of GABA_AR $\beta 2/3$ subunit cluster density to 38.2 \pm 4.4% of the wildtype value (Table 1). Together, these data indicate that gephyrin is required for the clustering of certain but not all GABA_A receptors containing the α 3 and/or the β 2/3 subunits.

Previously, we showed that cultured hippocampal neurons from *geph* -/- mice fail to accumulate GABA_AR $\alpha 2$ and $\gamma 2$ subunits at developing postsynaptic sites (Kneus-

sel et al., 1999b). To allow a direct comparison of the quantitative data described above with the previously observed lack of $\alpha 2$ and $\gamma 2$ subunit clustering in these cultured neurons, E19.5 spinal cord sections were also stained in parallel with $\alpha 2^{-}$ and $\gamma 2$ -subunit-specific antibodies. For the α 2 subunit, determination of the number of puncta per 50- μ m² area in the individual genotypes revealed density values of 34.3 \pm 3.1 puncta per 50 μ m² for geph -/- tissue compared to 221.4 \pm 6.1 puncta found per 50 μ m² in wild-type tissue (Table 1). This corresponds to a reduction of GABA_AR $\alpha 2$ subunit cluster density to $15.5 \pm 1.4\%$ of the wild-type value (Table 1). Similarly, for the $\gamma 2$ subunit, density values of 38.0 ± 4.1 puncta per 50 μm^2 were obtained in geph -/- tissue compared to 257.5 ± 9.5 puncta found per 50 μ m² in wild-type tissue (Table 1), indicating a reduction of $GABA_AR \gamma 2$ subunit cluster density to $14.8 \pm 1.6\%$ of the wild-type value (Table 1). We therefore conclude that in spinal cord, both α 2- and γ 2-subunit-containing GABA_ARs also require gephyrin for correct synaptic localization.

Expression Levels of GABA_AR α 3 and β 2/3 Subunits Are Unaltered in geph –/– Mice

To determine whether the reductions in cluster density observed for the GABA_AR subunits α 3 and β 2/3

FIG. 4. Western blot analysis of the GABA_AR subunits α 3 and β 2/3 in brain and spinal cord membrane fractions prepared from wild-type, *geph* +/-, and *geph* -/- animals. Equal amounts of protein (40 or 25 μ g/lane, respectively) were loaded and probed with the indicated antisera. Note that the expression levels of all GABA_AR subunits tested were not significantly different in the individual genotypes.

were due to changes in subunit expression levels, we performed Western blot analysis on pooled extracts of brain and spinal cord prepared from E19.5 wild-type as well as from heterozygous and homozygous gephyrindeficient mice. The immunoreactivities of these GABA_AR subunits were unaltered in all genotypes examined (Fig. 4), indicating that the rate of synthesis of these membrane proteins does not change upon gephyrin deficiency. These data are consistent with previous Western blot data showing unaltered expression levels of the GABA_AR subunits α^2 and γ^2 in wild-type and geph -/- mice (Kneussel *et al.*, 1999b).

Remaining α 3- and β 2/3-Subunit-Immunoreactive Puncta in geph -/- Tissue Are Localized at Synaptic Sites

To reveal whether the remaining GABA_AR clusters in *geph* -/- tissue were found at sites of presynaptic terminal contact, we performed double-labeling of sections stained for the GABA_AR α 3 or β 2/3 subunits with an antibody against the vesicular inhibitory amino acid transporter (VIAAT, also named VGAT) (Sagne *et al.*, 1997; McIntire *et al.*, 1997). VIAAT represents an established marker of both glycinergic and GABAergic presynaptic boutons (Chaudhry *et al.*, 1998; Dumoulin *et al.*, 1999). As shown in Figs. 5A–5D, in *geph* -/- mice the vast majority of the remaining α 3 and β 2/3 clusters were apposed to sites of VIAAT immunoreactivity.

Quantification of the puncta positive for GABA_AR α 3 and β 2/3 immunoreactivities that colocalized with presynaptic VIAAT-positive terminals revealed average colocalization indices of 91.5 ± 3.3% for the α 3 subunit and of 93.5 ± 1.4% for the β 2/3 subunits, respectively (Fig. 5E). Thus, certain GABA_ARs containing α 3 and/or β 2/3 subunits do not require gephyrin for synaptic localization.

DISCUSSION

The major finding of this study is that the number of $GABA_A$ receptor subunit α 1- and α 5-immunoreactive puncta is unaltered in spinal cord tissue derived from gephyrin-deficient mice. This indicates that in spinal neurons gephyrin is not required for the synaptic accumulation of receptors containing the $\alpha 1$ and $\alpha 5$ subunits. Our result contrasts with different studies with hippocampal, spinal, and retinal neurons (Essrich et al., 1998; Kneussel et al., 1999b; Fischer et al., 2000), in which gephyrin was found to be essential for the clustering of the abundant GABA_A receptor $\alpha 2$, $\alpha 3$, and $\gamma 2$ subunits. In hippocampal neurons, gephyrin deficiency fully prevented the synaptic localization of α^2 and γ^2 subunit immunoreactivities (Essrich et al., 1998; Kneussel et al., 1999b). Our quantitative immunofluorescence data from E19.5 spinal cord sections largely corroborate this conclusion; an 85% reduction in both α 2- and γ 2-subunit-immunoreactive puncta was seen. As previous studies reported differences in the number of postsynaptic receptor clusters in comparisons of retinal neurons in vitro and in vivo (Fischer et al., 2000), the lower incidence of $\alpha 2$ and $\gamma 2$ subunit clusters in cultured hippocampal neurons than in spinal cord sections might reflect effects of the tissue culture conditions.

In organotypic retinal cultures prepared from geph -/- mice, a strong reduction but no complete loss of α^2 -, α^3 -, and γ^2 -positive clusters has been noted (Fischer et al., 2000). Consistent with these earlier observations, the punctate staining of GABA_A receptors containing the $\alpha 3$ and/or $\beta 2/3$ subunits was partially reduced in the spinal cord of gephyrin-deficient mice. To determine whether the residual GABA_AR hotspots in geph -/- mice were still synaptically localized, we double-labeled sections for both $\alpha 3$ or $\beta 2/3$ and the presynaptic inhibitory marker VIAAT. Notably, the majority of the α 3- and β 2/3-subunit-positive puncta seen in the mutant mice precisely colocalized with VIAAT immunoreactivity, showing that the residual clusters were apposed to inhibitory nerve endings. This observation further strengthens the view that clustering pro-

FIG. 5. GABA_AR clusters and VIAAT-immunoreactive presynaptic terminals. Double-immunostaining of VIAAT-positive terminals (A, C) and GABA_AR α 3 (B) or β 2/3 (D) subunits in spinal cord sections of *geph* -/- mice. Most of the remaining GABA_AR receptor clusters (red) containing α 3 and/or β 2/3 subunits colocalize with presynaptic VIAAT (green) immunoreactivity, indicating that these receptor clusters are present at synaptic sites in the absence of gephyrin (arrows). Scale bar, 5 μ m. (E) Quantitative evaluation of GABA_AR subunit-immunoreactive puncta colocalizing with VIAAT immunoreactivity. The relative densities of double-immunoreactive hotspots were determined in 20 section areas of 50 μ m² each. Note that >90% of both the α 3- and β 2/3-subunit-immunoreactive sites are still apposed to presynaptic terminals. For α 3, *n* = 1401; for β 2/3, *n* = 729.

teins other than gephyrin contribute to the synaptic localization of GABA_ARs. The partial impairment of α 3 and $\beta 2/3$ subunit clustering revealed by our quantitative analysis might reflect the fact that more than a single subunit within the receptor pentamer is anchored to the subsynaptic gephyrin scaffold and/or cytoskeletal elements via specific adaptor proteins (Kneussel and Betz, 2000b). Consequently, only those GABA_AR clusters whose synaptic localization solely depends on gephyrin should be lost upon gephyrin depletion. Since all these GABA_AR clusters have been shown to represent synaptically localized receptors (Bohlhalter et al., 1994; Essrich et al., 1998; Kneussel et al., 1999b; this study), gephyrin clearly is important for the clustering of most GABA_ARs at postsynaptic membrane specializations in the mammalian CNS.

The most important conclusion of this paper, however, is that some GABA_AR subtypes must use largely different localization mechanisms, since the densities of both the α 1 and α 5 subunits were found here to be essentially unaltered in *geph* -/- tissue. We therefore propose that additional gene products, which mediate the clustering of these subunits, must exist. Notably, the α1 and α5 subunits have been suggested to form functional heterooligomeric receptors *in vivo* with the γ2 subunit (McKernan and Whiting, 1996), a GABA_AR protein whose synaptic localization is abolished upon gephyrin depletion (Essrich *et al.*, 1998; Kneussel *et al.*, 1999b; this study). Our data argue against this interpretation, since γ2-immunoreactive puncta are drastically reduced in the spinal cord of *geph* -/- mice. In conclusion, the data presented here support our previous suggestion (Kirsch and Betz, 1998; Kneussel and Betz, 2000b; Fischer *et al.*, 2000) that yet unknown proteins distinct from gephyrin mediate the formation of those GABA_AR clusters which persist in gephyrin-deficient mice.

The selective loss of some GABA_AR subtype clusters in the absence of gephyrin expression cannot be attributed to impaired axonal growth of distinct subtypes of GABAergic interneurons. The density of inhibitory presynaptic terminals as defined by VIAAT immunoreactivity was unaltered in the spinal cord of gephyrindeficient mice. This finding is remarkable since all GlyRs and most GABA_AR subtypes fail to accumulate synaptically in geph -/- animals. We therefore conclude that the loss of inhibitory postsynaptic receptor densities does not cause changes in the number of the respective presynaptic terminals. Since previous studies on autaptic hippocampal neurons in culture reported mismatched appositions of GABA_AR clusters opposite of glutamatergic terminals (Rao *et al.*, 2000), we further performed double-immunostainings for VIAAT and PSD-95 on sections derived from wild-type and *geph* -/- mice to unravel eventual appositions of the inhibitory nerve endings to excitatory postsynaptic membrane specializations. In both genotypes, the immuno-reactivities of both markers were found at distinct nonoverlapping sites, suggesting a clear separation of inhibitory and excitatory synaptic compartments.

An interesting aspect of our quantitative analysis of VIAAT-immunoreactive puncta concerns their absolute density values, which are similar to or even lower than those of the GABA_AR $\alpha 2$, $\alpha 5$, and $\gamma 2$ subunit clusters (Table 1). In previous studies (Kneussel et al., 1999b, 2000), only about 65% of the GABAAR clusters in wildtype neurons were found to be located at synaptic sites. This includes the GABA_AR $\alpha 2$ and $\gamma 2$ subunit clusters in cultured hippocampal neurons (Kneussel et al., 1999b), of which 65.9 \pm 6.9% for α 2 and 66.4 \pm 6.6% for γ^2 colocalized with presynaptic synaptophysin immunoreactivity. Thus, about 35% of the receptor clusters included in such quantifications might represent nonsynaptic receptor clusters. In addition, GlyR-positive sites that also are abundant in spinal cord and opposed to VIAAT-positive presynaptic terminals (Triller et al., 1985; Bohlhalter et al., 1994; Feng et al., 1998) have not been considered in this study. However, different reports indicate the existence of mixed synapses using both GABA and glycine as inhibitory transmitters in spinal cord (Triller et al., 1987; Bohlhalter et al., 1994; Jonas et al., 1998; Dumoulin et al., 2000). A recent quantitative analysis of GlyR- and GABA_AR-containing synapses in cultured spinal neurons reports colocalization values as high as $66.2 \pm 2.5\%$ after 11 days of *in vitro* differentiation (Dumoulin et al., 2000). Thus, the overall number of presynaptic VIAAT-positive nerve endings cannot be expected to be identical to the sum of all GlyR and GABA_AR subunit clusters. In addition, differences in antibody affinities and stages of development and/or maturity of the presynaptic nerve endings may contribute to the remaining inconsistencies. For example, at E19.5 a considerable fraction of the contacting terminals might not contain sufficient vesicles to be recognized by the VIAAT antibody in our light microscopical analysis.

In conclusion, the data presented confirm our previous notion that gephyrin is indeed essential for the clustering of the majority but not all $GABA_ARs$ and

extend this idea by the identification of two additional GABA_AR subunits, $\alpha 1$ and $\alpha 5$, which are synaptically localized in the absence of gephyrin. Future studies will be required to identify the clustering proteins which localize $\alpha 1$ - and $\alpha 5$ -subunit-containing GABA_ARs at developing inhibitory postsynaptic membrane specializations.

EXPERIMENTAL METHODS

Antibodies

GABA_AR immunoreactivities were visualized using primary antibodies specific for the α 1 (1:20,000), the α 2 (1:3000), the α 3 (1:6000), the α 5 (1:4000), the γ 2 (1:2000) (Bohlhalter *et al.*, 1996; kindly provided by Hans Möhler and Jean Marc Fritschy), and the β 2/3 (1:100) (Roche Diagnostics, Mannheim, Germany) subunits, respectively. Inhibitory presynaptic terminals were detected using a polyclonal antibody to the synaptic vesicle inhibitory amino acid transporter (VIAAT; 1:200) (Dumoulin *et al.*, 1999). Glutamatergic postsynaptic densities were stained using an antibody specific for PSD-95 (1:250, Affinity BioReagents, Grünberg, Germany). As secondary antibodies, Alexa 488 and Alexa 594 (Molecular Probes, Leiden, The Netherlands) were used.

Immunocytochemistry

To obtain spinal cord sections from wild-type and geph -/- mice (Feng et al., 1998; Kneussel et al., 1999b), tissue dissected from E19.5 mice was cut into blocks of 5 mm side length and fixed in 4% (w/v) paraformaldehyde for 10 min followed by a short wash in phosphatebuffered saline (PBS). To prevent the formation of crystals upon freezing, the sections were incubated in increasing concentrations of sucrose solution [10% (w/ v), 20% (w/v), 30% (w/v) +0.01% (w/v) sodium azide, respectively] at 4°C for 1 h each. Cryostat sections (10–15 μ m) were refixed for 5 min in 4% (w/v) paraformaldehyde and processed for immunocytochemistry as described (Kneussel et al., 1999b). Confocal microscopy was performed using a Leica TCS-SP confocal laser-scanning microscope equipped with Leica-TCS-NT version 1.6.551 image software. Images were taken from dorsal horn regions of the spinal cord.

Western Blot Analysis

Mouse homogenates were prepared as previously described (Kneussel et al., 1999b). Forty micrograms of

total protein per lane was separated by 10% SDS– PAGE. For visualization the α 3-specific antibody was diluted 1:1000; the β 2/3-specific antibody was diluted 1:100. After washing, bound Igs were visualized with horseradish peroxidase-conjugated secondary antibodies using the ECL system (Pierce, Rockford, IL).

Data Analysis

Punctate immunofluorescence was analyzed as described previously (Fischer et al., 2000). Confocal images, taken with a $63 \times$ objective, were printed and immunofluorescent puncta transferred onto tracing paper. The number of puncta per 50 μ m² was counted from different sections (n = 3-5). Between 948 and 2102 individual puncta were analyzed for each GABAAR subunit in wild-type and geph -/- samples. For the subunits $\alpha 1$ and $\alpha 5$, which display a restricted expression in certain spinal cord layers (Bohlhalter et al., 1996), areas of highest receptor abundance were used for quantitative evaluation. Remaining GABA_AR α 3- and $\beta 2/3$ -immunoreactive puncta were separately transferred onto tracing paper, and 778-1525 individual puncta were analyzed for colocalization in a total area of 1000 μ m² (Kirsch and Betz, 1998). For the quantification of the density of inhibitory presynaptic terminals represented by VIAAT immunoreactivity, 17,243 puncta from both genotypes were analyzed. Statistical significance was evaluated using the KaleidaGraph program (Synergy Software, Reading, PA) and Student's t test.

ACKNOWLEDGMENTS

This study would not have been possible without the generous supply of antibodies specific for the GABA_A receptor $\alpha 1$, $\alpha 2$, $\alpha 3$, $\alpha 5$, and $\gamma 2$ subunits by Drs. H. Möhler and J. M. Fritschy. We further thank Dr. J. M. Fritschy for critical comments on the manuscript, Anja Hildebrand and Dagmar Magalei for expert technical assistance, and Maren Baier for secretarial assistance. This work was funded by grants from Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, the European Community TMR Programme (FMRX-CT98-0228), and a Heisenberg Fellowship to J.H.B.

REFERENCES

- Altschuler, R., Betz, H., Parakkal, M. H., Reeks, K. A., and Wenthold, R. J. (1986). Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. *Brain Res.* 369: 316–320.
- Bechade, C., Colin, I., Kirsch, J., Betz, H., and Triller, A. (1996).

Expression of glycine receptor α subunits and gephyrin in cultured spinal neurons. *Eur. J. Neurosci.* **8**: 429–435.

- Bohlhalter, S., Möhler, H., and Fritschy, J. M. (1994). Inhibitory neurotransmission in rat spinal cord: Co-localization of glycine- and GABA_A-receptors at GABAergic synaptic contacts demonstrated by triple immunofluorescence staining. *Brain Res.* 642: 59–69.
- Bohlhalter, S., Weinmann, O., Möhler, H., and Fritschy, J. M. (1996). Laminar compartmentalization of GABA_A-receptor subtypes in the spinal cord: An immunohistochemical study. *J. Neurosci.* 16: 283– 297.
- Cabot, J. B., Bushnell, A., Alessi, V., and Mendell, N. R. (1995). Postsynaptic gephyrin immunoreactivity exhibits a nearly one-toone correspondence with γ-aminobutyric acid-like immunogoldlabeled synaptic inputs to sympathetic preganglionic neurons. *J. Comp. Neurol.* **356**: 418–432.
- Chaudhry, F. A., Reimer, R. J., Bellocchio, E. E., Danbolt, N. C., Osen, K. K., Edwards, R. H., and Storm-Mathisen, J. (1998). The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J. Neurosci. 18: 9733– 9750.
- Craig, A. M., Banker, G., Chang, W., McGrath, M. E., and Serpinskaya, A. S. (1996). Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. *J. Neurosci.* 16: 3166–3177.
- Craven, S. E., and Bredt, D. S. (1998). PDZ proteins organize synaptic signaling pathways. *Cell* 93: 495–498.
- Dumoulin, A., Rostaing, P., Bedet, C., Levi, S., Isambert, M. F., Henry, J. P., Triller, A., and Gasnier, B. (1999). Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J. Cell Sci. 112: 811–823.
- Dumoulin, A., Levi, S., Riveau, B., Gasnier, B., and Triller, A. (2000). Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons. *Eur. J. Neurosci.* 12: 3883–3892.
- Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M., and Lüscher, B. (1998). Postsynaptic clustering of major GABA_A receptor subtypes requires the γ 2 subunit and gephyrin. *Nat. Neurosci.* **7**: 563–571.
- Feng, G., Tintrup, H., Kirsch, J., Nichol, M. C., Kuhse, J., Betz, H., and Sanes, J. R. (1998). Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. *Science* 282: 1321–1324.
- Fischer, F., Kneussel, M., Tintrup, H., Haverkamp, S., Rauen, T., Betz, H., and Wässle, H. (2000). Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. *J. Comp. Neurol.* **427**: 634–648.
- Fritschy, J. M., and Möhler, H. (1995). GABA_A-receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits. *J. Comp. Neurol.* **359**: 154–194.
- Giustetto, M., Kirsch, J., Fritschy, J. M., Cantino, D., and Sassoe-Pognetto, M. (1998). Localization of the clustering protein gephyrin at GABAergic synapses in the main olfactory bulb of the rat. *J. Comp. Neurol.* **395**: 231–244.
- Jonas, P., Bischofberger, J., and Sandkuhler, J. (1998). Corelease of two fast neurotransmitters at a central synapse. *Science* 281: 419–424.
- Kennedy, M. (1997). The postsynaptic density at glutamatergic synapses. *Trends Neurosci.* 20: 264–268.
- Kirsch, J., Langosch, D., Prior, P., Littauer, U. Z., Schmitt, B., and Betz, H. (1991). The 93-kDa glycine receptor associated protein binds to tubulin. J. Biol. Chem. 266: 22242–22245.
- Kirsch, J., Wolters, I., Triller, A., and Betz, H. (1993). Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. *Nature* 266: 745–748.
- Kirsch, J., and Betz, H. (1995). The postsynaptic localization of the

glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15: 4148-4156.

- Kirsch, J., Meyer, G., and Betz, H. (1996). Synaptic targeting of ionotropic neurotransmitter receptors. *Mol. Cell. Neurosci.* 8: 93–98.
- Kirsch, J., and Betz, H. (1998). Glycine-receptor activation is required for receptor clustering in spinal neurons. *Nature* 392: 717–720.
- Kneussel, M., Hermann, A., Kirsch, J., and Betz, H. (1999a). Hydrophobic interactions mediate binding of the glycine receptor β -subunit to gephyrin. *J. Neurochem.* **72**: 1323–1326.
- Kneussel, M., Brandstätter, J. H., Laube, B., Stahl, S., Müller, U., and Betz, H. (1999b). Loss of postsynaptic GABA_A receptor clustering in gephyrin-deficient mice. J. Neurosci. 19: 9289–9297.
- Kneussel, M., and Betz, H. (2000a). Receptors, gephyrin and gephyrin-associated proteins: Novel insights into the assembly of inhibitory postsynaptic membrane specializations. J. Physiol. 525: 1–9.
- Kneussel, M., and Betz, H. (2000b). Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: The membrane activation model. *Trends Neurosci.* 23: 429–435.
- Kneussel, M., Haverkamp, S., Fuhrmann, J. C., Wang, H., Wässle, H., Olsen, R. W., and Betz, H. (2000). The GABA_A receptor associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. *Proc. Natl. Acad. Sci. USA* 97: 8594–8599.
- Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992a). The distribution of 13 GABA_A receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. *J. Neurosci.* **12**: 1063–1076.
- Laurie, D. J., Wisden, W., and Seeburg, P. H. (1992b). The distribution of thirteen GABA_A receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. *J. Neurosci.* **12**: 4151–4172.
- Levi, S., Chesnoy-Marchais, D., Sieghart, W., and Triller, A. (1999). Synaptic control of glycine and GABA_A receptors and gephyrin expression in cultured motoneurons. *J. Neurosci.* **19**: 7434–7449.
- McIntire, S. L., Reimer, R. J., Schuske, K., Edwards, R. H., and Jorgensen, E. M. (1997). Identification and characterization of the vesicular GABA transporter. *Nature* 389: 870–876.
- McKernan, R. M., and Whiting, P. J. (1996). Which $GABA_A$ -receptor subtypes really occur in the brain? *Trends Neurosci.* **19**: 139–142.
- Meyer, G., Kirsch, J., Betz, H., and Langosch, D. (1995). Identification of a gephyrin binding motif on the glycine receptor β subunit. *Neuron* **15**: 563–572.

Pfeiffer, F., Graham, D., and Betz, H. (1982). Purification by affinity

chromatography of the glycine receptor of rat spinal cord. J. Biol. Chem. 257: 9389–9393.

- Rao, A., Cha, E. M., and Craig, A. M. (2000). Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. J. Neurosci. 20: 8344–8353.
- Sagné, C., El Mestikawy, S., Isambert, M. F., Hamon, M., Henry, J. P., Giros, B., and Gasnier, B. (1997). Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. *FEBS Lett.* **417**: 177–183.
- Sassoe-Pognetto, M., Kirsch, J., Grünert, U., Greferath, U., Fritschy, J. M., Möhler, H., Betz, H., and Wässle, H. (1995). Colocalization of gephyrin and GABA_A receptor subunits in the rat retina. *J. Comp. Neurol.* 357: 1–14.
- Sassoe-Pognetto, M., Wässle, H., and Grünert, U. (1997). Glycinergic synapses in the rod pathway of the rat retina: Cone bipolar cells express the $\alpha 1$ subunit of the glycine receptor. *J. Neurosci.* **14**: 5131–5146.
- Sassoe-Pognetto, M., and Fritschy, J. M. (2000). Gephyrin, a major postsynaptic protein of GABAergic synapses. *Eur. J. Neurosci.* 12: 2205–2210.
- Schmitt, B., Knaus, P., Becker, C. M., and Betz, H. (1987). The Mr 93000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. *Biochemistry* 26: 805–811.
- Sheng, M. (1996). PDZs and receptor/channel clustering: Rounding up the latest suspects. *Neuron* 17: 575–578.
- Todd, A. J., Watt, C., Spike, R. C., and Sieghart, W. (1996). Colocalization of GABA, glycine and their receptors at synapses in the rat spinal cord. J. Neurosci. 16: 974–982.
- Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H., and Korn, H. (1985). Distribution of glycine receptors at central synapses: An immunoelectron microscopy study. J. Cell Biol. 101: 683–688.
- Triller, A., Cluzeaud, F., and Korn, H. (1987). Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. *J. Cell Biol.* **104**: 947–956.
- Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., and Olsen, R. W. (1999). GABA_A-receptor-associated protein links GABA_A receptors and the cytoskeleton. *Nature* **397**: 69–72.
- Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992). The distribution of 13 GABA_A receptor subunit mRNAs in the rat brain.
 I. Telencephalon, diencephalon, mesencephalon. *J. Neurosci.* 12: 1040–1062.

Received January 18, 2001 Accepted March 20, 2001