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Dual Requirement for Gephyrin
in Glycine Receptor Clustering
and Molybdoenzyme Activity

Guoping Feng,* Hartmut Tintrup,* Joachim Kirsch, Mia C. Nichol,
Jochen Kuhse, Heinrich Betz, Joshua R. Sanes†

Glycine receptors are anchored at inhibitory chemical synapses by a cytoplas-
mic protein, gephyrin. Molecular cloning revealed the similarity of gephyrin to
prokaryotic and invertebrate proteins essential for synthesizing a cofactor
required for activity of molybdoenzymes. Gene targeting in mice showed that
gephyrin is required both for synaptic clustering of glycine receptors in spinal
cord and for molybdoenzyme activity in nonneural tissues. The mutant phe-
notype resembled that of humans with hereditary molybdenum cofactor de-
ficiency and hyperekplexia (a failure of inhibitory neurotransmission), suggest-
ing that gephyrin function may be impaired in both diseases.

The main inhibitory inputs to spinal cord and
brain-stem motoneurons use glycine as a neu-
rotransmitter (1). The a and b transmem-
brane subunits of glycine receptors (GlyRs)
from spinal cord copurify with gephyrin, a
93-kD cytoplasmic protein (2). Gephyrin
binds to the b subunit of the GlyR and to
tubulin, thereby linking GlyRs to the cy-
toskeleton (3). This interaction appears to be

important for the accumulation of GlyRs at
synapses, because GlyRs are precisely colo-
calized with gephyrin at synapses in the brain
and spinal cord, gephyrin aggregates GlyRs
when coexpressed with them in heterologous
cells, and attenuation of gephyrin synthesis
with antisense oligonucleotides prevents
clustering of GlyRs at synaptic sites on cul-
tured spinal neurons (4–6 ). Molecular clon-
ing of gephyrin (7) revealed unexpected sim-
ilarity to three Escherichia coli proteins
(moeA, moaB, and mog), a Drosophila mela-
nogaster protein (cinnamon), and an Arabi-
dopsis thaliana protein (cnx1), all of which
are involved in the synthesis of a molybde-
num-containing cofactor essential for the ac-
tivity of molybdoenzymes (8). This conser-
vation (Fig. 1A) suggested that genes of the
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same bacterial operon may have been joined
during evolution to form a multidomain pro-
tein that gained a novel function.

We disrupted the gephyrin gene by deleting
exon 1 and upstream sequences responsible for
initiating transcription and translation (9, 10).

The mutant allele (Fig. 1B) was transferred to
embryonic stem (ES) cells by electroporation,
and two successfully targeted clones gave rise
to germ-line chimeras (Fig. 1, C and D). Het-
erozygous offspring (geph1/–) were phenotyp-
ically normal. Homozygous mutants (geph–/–)
were born in expected numbers, despite lacking
detectable gephyrin mRNA (Fig. 1E) and pro-
tein (Fig. 1F). However, all geph–/– mice died
within 1 day of birth. Thus, gephyrin was dis-
pensable for embryonic development but essen-
tial for postnatal survival.

Geph–/– neonates appeared externally nor-
mal but failed to suckle and never produced the
vocalizations characteristic of normal neonates.
In response to mild tactile stimuli, control mice
flailed their limbs, whereas geph–/– littermates
assumed a rigid, hyperextended posture (Fig. 2,
A and B). The mutants became increasingly
hyperresponsive to tactile stimuli and exhibited
apnea (difficulty breathing) by 12 hours after
birth. These symptoms are consistent with im-
pairment of inhibitory glycinergic inputs to mo-
toneurons. To test this possibility, we stained
spinal cord sections of geph–/– mice and litter-
mate controls with antibodies to synaptic com-
ponents (11). In controls, GlyRs and gephyrin
are colocalized at inhibitory synapses on mo-
toneuronal somata and primary dendrites (4). In
homozygous mutants, synaptic boutons were
numerous, but no gephyrin was detected, and
GlyRs were diffusely distributed (Fig. 3A).
Likewise, gephyrin and GlyRs were coclus-
tered on subsets of neurons in the brainstem and
hypothalamus of control neonates, but gephyrin
was undetected and GlyRs were diffusely lo-
calized in geph–/– littermates (Fig. 3B). High
levels of GlyR mRNA and protein persisted in
geph–/– brains (Fig. 3, D and E), indicating that
gephyrin was required for GlyR aggregation
rather than GlyR synthesis. No difference was
detected between mutants and controls in the
size or distribution of glutamate receptor clus-
ters, in the synaptic localization of their putative
clustering proteins of the PSD-95/SAP-90 fam-
ily (12), or in the overall morphology of the
spinal cord and brain (Fig. 3, A and C). Thus,
defects were specific for GlyRs.

The motor defects seen in geph–/– mice
occurred earlier and were more severe than
those observed in mutant mice that lack the
GlyR a1 subunit or have reduced levels of the
GlyR b subunit (13). This difference might be
due to a more drastic reduction of synaptic
GlyR levels in geph–/– mice, but the sequence
similarity noted above (7, 8) raised the possi-
bility that gephyrin might also be required for
molybdenum metabolism. In fact, humans born
with autosomal recessive molybdenum cofactor
deficiency exhibit severe neurological defects
that resemble those seen in geph–/– mice, such
as hypertonicity, myoclonus, and difficulty in
feeding (14). Molybdenum cofactor deficiency
is diagnosed in humans by demonstrating coor-
dinate loss of activity of two distinct molybde-
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Fig. 1. Structure of gephyrin and
generation of geph–/– mice. (A)
Gephyrin shows similarity with
proteins from E. coli (mog, moaB,
and moeA), Drosophila (cinna-
mon), and Arabidopsis (cnx1) that
have been implicated in molybde-
num cofactor metabolism. MoaB/
mog-like and moeA-like regions
are indicated by hatched and open
bars, respectively. (B) Targeting
strategy. Wild-type geph gene
(top), targeting vector (middle),
and mutant locus (bottom) are
shown. Sites of primers for poly-
merase chain reaction (PCR) geno-
typing (arrowheads) and external
probe for Southern blot (DNA)
analysis are indicated. E, Eco RI; Ea,
Eag I; EV, Eco RV; H, Hind III; P, Pst
I; S, Sac I; NEO, neomycin resis-
tance gene; TK, thymidine kinase.
(C) Southern blot analysis of wild-
type and two successfully target-
ed ES cell clones. (D) PCR analysis
of genomic DNA from wild-type
(1/1), heterozygous (1/–), and
homozygous (–/–) littermates. (E)
Northern blot analysis of gephyrin
mRNA from brain, using a full-
length cDNA as probe. (F) Protein
immunoblot analysis of gephyrin
immunoreactivity from brain. The
light band in all lanes represents
nonspecific reactivity.

A B C

Geph +/- Geph -/- Strychnine
Geph +/+Fig. 2. Geph1/2 (A),

geph2/2 (B), and
geph1/1 (C) mice ap-
proximately 8 hours af-
ter birth. Littermates in
(A) and (B) were touched
gently before photogra-
phy, to show the rigid,
hyperextended posture
of geph2/2 mice. Also
note that the homozy-
gote has no milk in its
stomach. (C) Injection of
a wild-type neonate
with strychnine (1.4
mg/g of body weight)
phenocopies the charac-
teristic geph2/2 posture.
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num-containing enzymes, sulfite oxidase and
xanthine dehydrogenase, which are ubiquitous-
ly expressed (14). We readily detected sulfite
oxidase activity (15) in livers of control neo-
nates, but not in livers of geph–/– mice (Fig.
4A). Xanthine dehydrogenase is not present in
liver at birth even in controls, but is expressed
in intestine. Xanthine dehydrogenase is also
abundant in milk (16), so we avoided this
source of contamination by assaying fetal intes-
tine (17) and detected no activity in the ho-
mozygous mutants (Fig. 4B). As a control, we
assayed the activity of an unrelated metabolic
enzyme, lactate dehydrogenase, and the abun-
dance of sulfite oxidase mRNA (18). Neither of
these parameters differed among genotypes
(Fig. 4, C and D). Thus, gephyrin appears to be
essential for molybdenum cofactor biosynthesis
in mice.

In view of these defects in molybdoenzyme
activity, we considered the possibility that the
neurological symptoms of geph–/– mice were
secondary to their metabolic disorder rather
than to disruption of glycinergic synapses. Two
findings favor this possibility. First, patients
with mutations in the sulfite oxidase gene are
symptomatically similar to patients that lack
molybdenum cofactor, suggesting that neuro-
logical defects in both groups result from sulfite
toxicity (19). Second, glycinergic transmission
may be excitatory rather than inhibitory in em-
bryos (20). The developmental stage at which
activation of GlyR becomes inhibitory is
around birth in rats (21) but is unknown in
mice. If it were postnatal, interference with
glycinergic transmission might have a calming

rather than a stimulatory effect on motor behav-
ior, and the observed hyperresponsiveness of
geph–/– mice could reflect sulfite toxicity. To
address these issues, we injected neonatal mice
with strychnine, a specific antagonist of GlyR
(21). Like gephyrin mutants, strychnine-intoxi-
cated neonates assumed a rigid, hyperextended
posture in response to mild tactile stimuli (Fig.
2C). Thus, glycinergic transmission appeared to
be predominantly inhibitory at birth, and block-
ade of glycinergic transmission in the absence
of interference with molybdenum metabolism
phenocopied the motor symptoms of gephyrin
deficiency. Motor defects in geph–/– mice—and
by implication, in molybdenum cofactor–defi-
cient humans—may therefore result from both
impaired inhibitory neurotransmission and im-
paired molybdoenzyme activity.

Our results demonstrate that gephyrin is
essential for the synaptic clustering of
GlyRs in vivo. Gephyrin may play a role at
inhibitory synapses similar to that played
by the clustering protein rapsyn at neuro-
muscular junctions (22). A second role of
gephyrin is in synthesis of molybdenum
cofactor. Homologous proteins have been
described in other phyla (8), but no com-
ponents of the molybdenum cofactor syn-
thetic pathway have been identified in ver-
tebrates. This peculiar pleiotropy raises
four interesting possibilities. First, muta-
tions in the gephyrin gene may underlie
some cases of autosomal recessive human
molybdenum cofactor deficiency. Second,
some neurological symptoms now attribut-
ed to molybdoenzyme inactivity in humans

may actually reflect a lack of receptor ac-
cumulation at inhibitory synapses. Third,
although some cases of hyperekplexia
(startle disease or stiff baby syndrome) are
due to mutations in the GlyR (23), others
might result from mutations of gephyrin, in
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Fig. 3. Disrupted clustering of
GlyRs in geph–/– mutant ne-
onates. (A) Cryostat sections
are shown of spinal cord
stained with two antibodies
to gephyrin that recognize
distinct epitopes (5a and 7a),
and with antibodies to the
GlyR a1 subunit, the gluta-
mate receptor GluR1 subunit,
a conserved domain on sev-
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SAP-90 family (PDZ), and
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Gephyrin and GlyRs cocluster
on motoneuronal somata and
proximal dendrites in con-
trols. Insets show localization
of these proteins at synaptic
sites by double labeling (green,
gephyrin or GlyR; red, syn-
aptophysin; yellow, overlap).
Gephyrin is absent and GlyRs
are diffusely distributed in
mutants, but synapses are
present. GluR1 and PSD-95–
like proteins, shown in a dou-
ble-labeled section, are clustered in both 1/– and –/– mice. Bar, 10 mm. (B)
Confocal images of GlyR immunoreactivity in hypothalamic neurons from
1/1 and –/– mice. Inset shows a portion of the mutant neuron at increased
gain, to demonstrate diffusely distributed GlyRs. (C) Geph–/– spinal cord

exhibits normal overall morphology, revealed by staining with hematoxylin
and eosin. (D) Northern blot analysis of GlyR a1 subunit mRNA in homozy-
gous mutants and littermate controls. (E) Protein immunoblot analysis of
GlyR immunoreactivity in mutant and controls.
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icantly among genotypes.
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which case some of the symptoms could
reflect molybdenum insufficiency. Finally,
activation or aggregation of GlyRs might
modulate the ability of gephyrin to promote
molybdopterin biosynthesis, thus resulting
in a functional link between molybdoen-
zymes and inhibitory neurotransmission.
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Structure of Human Methionine
Aminopeptidase-2 Complexed

with Fumagillin
Shenping Liu, Joanne Widom, Christopher W. Kemp,

Craig M. Crews, Jon Clardy*

The fungal metabolite fumagillin suppresses the formation of new blood ves-
sels, and a fumagillin analog is currently in clinical trials as an anticancer agent.
The molecular target of fumagillin is methionine aminopeptidase-2 (MetAP-2).
A 1.8 Å resolution crystal structure of free and inhibited human MetAP-2 shows
a covalent bond formed between a reactive epoxide of fumagillin and histidine-
231 in the active site of MetAP-2. Extensive hydrophobic and water-mediated
polar interactions with other parts of fumagillin provide additional affinity.
Fumagillin-based drugs inhibit MetAP-2 but not MetAP-1, and the three-di-
mensional structure also indicates the likely determinants of this specificity.
The structural basis for fumagillin’s potency and specificity forms the starting
point for structure-based drug design.

Angiogenesis, the growth of new blood vessels,
is a pathological determinant in tumor progres-
sion, diabetic retinopathy, and rheumatoid ar-
thritis (1). The serendipitous discovery that
fumagillin, a fungal metabolite, potently inhib-
its angiogenesis initiated the systematic devel-
opment of small molecule angiogenesis inhibi-
tors (2, 3) (Fig. 1). One semisynthetic derivative
of fumagillin, TNP-470, is in clinical trials as an
anticancer agent (Fig. 1) (3, 4). Fumagillin-
based affinity reagents identified MetAP-2 as
the specific cellular target of fumagillin, and

this specificity was confirmed with genetically
altered yeast strains (5, 6). The correlation be-
tween the antiproliferative activity of several
fumagillin analogs with their ability to inhibit
MetAP-2 activity in vitro suggests that
MetAP-2 is the physiologically relevant target
of fumagillin-based therapeutic agents (6). This
suggestion is strengthened by a recent report
that human endothelial cells are especially sen-
sitive to fumagillin and that proliferation of
these cells can be blocked by human MetAP-2
antisense oligonucleotides (7). MetAPs, which
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Fig. 1. The chemical structure of fumagillin and
TNP-470.
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