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SUMMARY

Autism spectrum disorder (ASD) is a heterogeneous
disease, but genetically defined models can provide
an entry point to studying the molecular underpin-
nings of this disorder. We generated germlinemutant
mice with loss-of-function mutations in Chd8, a
de novo mutation strongly associated with ASD,
and demonstrate that these mice display hallmark
ASD behaviors, macrocephaly, and craniofacial ab-
normalities similar to patient phenotypes. Chd8+/–

mice display a broad, brain-region-specific dysregu-
lation of major regulatory and cellular processes,
most notably histone and chromatin modification,
mRNA and protein processing, Wnt signaling, and
cell-cycle regulation. We also find altered synaptic
physiology in medium spiny neurons of the nucleus
accumbens. Perturbation ofChd8 in adult mice reca-
pitulates improved acquired motor learning behavior
found in Chd8+/– animals, suggesting a role for CHD8
in adult striatal circuits. These results support a
mechanism linking chromatin modification to striatal
dysfunction and the molecular pathology of ASD.

INTRODUCTION

Autismspectrumdisorder (ASD) remains a poorly understooddis-

ease despite major recent advances in identifying risk alleles and
This is an open access article under the CC BY-N
associated symptoms. Sequencing-based studies have identified

over 800 risk alleles, highlighting the genetic complexity of ASD

(Abrahams and Geschwind, 2008; Iossifov et al., 2012; O’Roak

et al., 2011, 2012a, 2012b; Parikshak et al., 2013). One approach

to dissecting this complexity is to createmousemodels that carry

mutations that mirror those in patients (Nestler and Hyman, 2010;

Silverman et al., 2010), providing an entry point to studying the

impact of risk alleles identified through genome sequencing.

Oneof thegenesmost strongly associatedwithASD is chromo-

domain helicase DNA-binding protein 8 (CHD8), which encodes

anATP-dependent chromatin remodeler (Bernier et al., 2014; Ios-

sifov et al., 2012; Neale et al., 2012; O’Roak et al., 2012a, 2012b;

Sanders et al., 2012; Talkowski et al., 2012; Zahir et al., 2007). The

first evidence for its role in ASDwas the identification of disruptive

CHD8 mutations in two unrelated children with cognitive impair-

ment and developmental delay (Zahir et al., 2007). Further inves-

tigation into balanced chromosomal abnormalities (Talkowski

et al., 2012) and de novo exome sequencing of ASDpatients sug-

gested an important role for CHD8 in the brain (Iossifov et al.,

2012; Neale et al., 2012; O’Roak et al., 2012a, 2012b; Sanders

et al., 2012). Functional analysis using knockdown in human cells

in vitro indicated that CHD8 regulates many ASD risk genes

involved in neurodevelopment and synaptic function (Cotney

et al., 2015; De Rubeis et al., 2014; Sugathan et al., 2014; Wilkin-

son et al., 2015). Based on these lines of evidence, Bernier et al.

(2014) performed targeted resequencing of 3,730 children with

ASD or developmental delay and proposed a subtype of ASD

patients with mutations in CHD8 and specific phenotypes.

To gain insight into the role of CHD8 in the brain, we gener-

ated mice carrying Chd8 heterozygous loss-of-function (LOF)
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mutations, the predominant form found in ASD patients. Chd8+/–

mice present with macrocephaly, craniofacial abnormalities, and

behavioral deficits. Analysis of genome-wide CHD8 binding sites

and brain-wide gene expression profiles shows brain region-

specific enrichments for other ASD-associated genes as well

as histone and chromatin modification, mRNA processing, pro-

tein folding, and cell cycle. We find a nucleus accumbens

(NAc)-specific upregulation in Wnt signaling, highlighting the

importance of CHD8 regulation in this brain region. Based on

this regulatory profile and the observed behavioral phenotypes,

we investigated the electrophysiology of medium spiny neurons

(MSNs) within the NAc and observed a decrease in local inhibi-

tory signaling coinciding with an increase in spontaneous excit-

atory activity. Finally, in vivo perturbation of Chd8 in the NAc

of wild-type adult animals recapitulates the acquired motor

learning phenotype found inChd8+/– mice, linking striatal circuits

to the observed phenotypes. These data provide insight into the

role of CHD8 in the brain as well as its contribution to ASD.

RESULTS

Generation of a Chd8 LOF Mutant Mouse via
Cas9-Mediated Germline Editing
To study the role of CHD8 expression in the brain, we generated

germlinemutant mice using Cas9 (Figure 1A). We designed three

single guide RNAs (sgRNAs) targeting the Chd8 gene and tested

their efficiency by transient transfection in mouse N2A cells fol-

lowed by insertion and deletion (indel) analysis (Figures 1B and

S1). The optimal sgRNA was identified, co-injected with Cas9

mRNA into the pronucleus of C57BL/6 single cell zygotes, and

implanted into recipient mothers at the two-cell stage (Wang

et al., 2013). Progeny were born with a variety of mutant alleles

harboring indels at the target site (Figure 1C). Genotyping tail tis-

sue revealed that individual animals had between one and four

unique alleles, indicating that the first generation of gene edited

progeny were mosaic. These animals likely resulted from unique

editing events after division of the single cell zygote. To charac-

terize the distribution of genotypes, animals were classified as

having zero (wild-type, n = 27), one (monoallelic, n = 3), two (bial-

lelic, n = 1), or more than two (multiallelic, n = 7) mutant allele(s)

(Figures 1D and S1).

Mutations in CHD8 identified in patients are most often LOF,

and therefore we reasoned that a Cas9-mediated indel causing

a frameshift mutation within an early constitutive exon would

be sufficient to disrupt protein expression. To establish a mouse

line with a single, germline transmitted LOFmutation inChd8, we

crossed all of the first generation Chd8 mutant progeny (n = 11)

to wild-type mice. Within each resulting litter at least one prog-

eny harbored a mutant allele identified within the parent. We

also identified new alleles not found in the tail snips of parents.

Therefore, we refer to the first generation of germline edited

progeny as ‘‘mosaic founders’’ to distinguish them from true

founders with germline transmission of a single unique allele.

One founder with germline transmission of aChd8 allele contain-

ing a 7-nucleotide deletion in exon 1 that causes a frameshift mu-

tation (Figure 1C, bold sequence) was selected to establish the

Chd8+/– strain, which was used for all further analyses. Heterozy-

gous mice showed approximately half the expression of CHD8
336 Cell Reports 19, 335–350, April 11, 2017
as compared to wild-type littermates (Figure 1E). As expected,

homozygousmutant animals (Chd8–/–) were not viable (Figure 1F)

(Nishiyama et al., 2004). Chd8+/– mice were viable and fertile but

had reduced body size (wild-type [WT] [n = 58] 26.9 ± 0.2 g SEM,

Chd8+/– [n = 64] 26.1 ± 0.2 g SEM, two-tailed t test p value =

0.016) (Figures 1G and S2A). Taken together, our results demon-

strate that Cas9-mediated zygote editing results in mosaic foun-

derswith potential for germline transmission ofChd8 LOF alleles,

with additional crosses, single alleles can be selected.

Macrocephaly and Abnormal Craniofacial Features in
Chd8+/– Mice
CHD8 mutant patients frequently exhibit macrocephaly and

craniofacial abnormalities (Bernier et al., 2014). To determine

whether Chd8+/– mice recapitulate similar features, we utilized

ex vivo high-resolution brain magnetic resonance imaging

(MRI) to assess intraocular distance and total brain volume in

10-week-old males. We found an increase in both intraocular

distance (wild-type [n = 8] 7.8 ± 0.1 mm SEM, Chd8+/– [n = 8]

8.33± 0.08mmSEM, two-tailed t test p value = 0.001) (Figure 1H)

as well as total brain volume (wild-type [n = 8] 430 ± 10 mm3

SEM,Chd8+/– [n = 8] 476 ± 9mm3 SEM, two-tailed t test p value =

0.002) (Figure 1I) in Chd8+/– mice compared to wild-type litter-

mates. Thus, Chd8+/– mice recapitulate these patient-like

morphological phenotypes.

CHD8 Is Expressed in Most Cell Types throughout the
Brain
To understand the function of CHD8, we first determined the

developmental expression profile of CHD8 protein in wild-type

C57BL/6mousebrainbyperformingwesternblots onwholebrain

samples collected throughout embryonic development (E11.5–

E19.5) as well as in neonates (P0) and adults (Figure S2B). We

found that CHD8 protein was expressed strongly during embry-

onic development, but also remains observable in neonates and

adults (Figures S2B and S2C). These results are consistent with

results from human and macaque brains (Bernier et al., 2014).

To determine whether CHD8 expression was limited to a spe-

cific cell type, we prepared sections from adult (10-week-old

males) Chd8+/– mice and wild-type littermates. Immunofluores-

cence imaging shows that CHD8 expression is punctate and

localized within the nucleus of almost every cell (CHD8- and

DAPI-positive) (Figures S2C–S2E). Specifically, we find that

CHD8 is expressed in mature neurons (NeuN-positive), interneu-

rons (parvalbumin [PV]-positive), oligodendrocytes (CNP1-posi-

tive), and astrocytes (GFAP-positive) (Figures S2D and S2E).

Interestingly, CHD8 is expressed in most, but not all DAPI- and

NeuN-positive cells, suggesting a cellular population or a dy-

namic state in which CHD8 is not expressed.

CHD8 Affects Pathways Involved in Cell Cycle and
Histone and Chromatin Modification
CHD8 is a chromatin modifier and transcription factor that has

been shown to bind to �2,000 transcriptionally active genes in

stable cell lines (Subtil-Rodrı́guez et al., 2014). It therefore may

regulate downstream genes associated with ASD risk. In support

of this possibility, transcriptional profiling of human neural

progenitor cells in which CHD8 was knocked down identified
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Figure 1. Generation and Morphological Characterization of Germline Mutant Chd8+/– Mice

(A) Workflow for generating and characterizing germline edited mice.

(B) Chd8 targeting strategy and sgRNA design. See also Figure S1.

(C) Sequences ofChd8 edited alleles in mosaic founders. Data represent all mutant alleles found within 38 animals from six recipient mothers. BoldedChd8 allele

with 7-nt deletion represents LOF mutation in established mouse line used for all phenotypic characterizations.

(D) Classification and quantification ofChd8-targetedmosaic founder genotypes. Mice were classified as having zero (wild-type, n = 27), one (monoallelic, n = 3),

two (biallelic, n = 1), or more than two (multiallelic, n = 7) mutant allele(s). See also Figure S1.

(E) CHD8protein expression in whole brain lysates fromwild-type andChd8+/– embryonic day 18mice, showing reduced expression (wild-type [n = 3] 100% ± 4%

SEM, Chd8+/– [n = 4] 71% ± 3% SEM) in heterozygous mutant mice. Each lane was loaded with 5 mg of protein with GAPDH as loading control.

(F) Plot of expected (red dashed line) versus actual genotype ratios demonstrating homozygous null animals are embryonic lethal. See also Figure S2.

(G) Weights of 10-week-old male Chd8+/– mice compared to wild-type littermates (wild-type [n = 58] 26.9 ± 0.2 g SEM, Chd8+/– [n = 64] 26.1 ± 0.2 g SEM, two-

tailed t test p value = 0.016).

(H) Intraocular distances of 10-week-oldmaleChd8+/– mice compared towild-type littermates (wild-type [n = 8] 7.8 ± 0.1mmSEM,Chd8+/– [n = 8] 8.33 ± 0.08mm

SEM, two-tailed t test p value = 0.001).

(I) Total brain volume of 10-week-old male Chd8+/– mice compared to wild-type littermates (wild-type [n = 8] 430 ± 10 mm3 SEM, Chd8+/– [n = 8] 476 ± 9 mm3

SEM, two-tailed t test p value = 0.002).
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B Figure 2. ChIP-Seq of Adult Chd8+/– Cortex

Shows Peak Enrichment Near Transcrip-

tional Start Sites and in Critical Cellular

Pathways

(A) Bar chart of CHD8 binding peaks as a per-

centage of total peaks showing CHD8 primarily

binds in promoters (wild-type 38%; Chd8+/� 39%)

for both genotypes. Replicate somatosensory

cortices from wild-type (n = 2) and Chd8+/– mice

(n = 2) were microdissected and used for ChIP-seq.

ChIP-seq controls were both input and IgG for each

genotype. Peaks were called for each genotype

and each control using MACS2 (FDR cutoff of 1%).

Only peaks shared between input and IgG for a

particular genotype were considered. Annotations

were made using HOMER with the mouse mm10

genome assembly and annotation.

(B) Histogram of CHD8 peaks around the tran-

scription start site (TSS). Distance from TSS was

calculated using HOMER with the mouse mm10

genome assembly and annotation.

(C) Functional interpretation and gene ontology of

CHD8 peaks in Chd8+/+ cortex using GREAT

(McLean et al., 2010). Enriched terms for molecular

function, biological process, cellular component,

MSigDB pathway, and MSigDB predicted pro-

moter motifs are shown.

See also Figure S3.
several dysregulated ASD-associated genes as well as other

genes associated with synapse and brain development (Cotney

et al., 2015; Sugathan et al., 2014; Wilkinson et al., 2015). We

investigated the genome-wide binding profile of CHD8 in the cor-

tex of 10-week-old male mice to identify likely target genes as

well as dysregulated pathways. As a control both chromatin

immunoprecipitation sequencing (ChIP-seq) inputs and IgG con-

ditions on age and genotype tissue were utilized. Peaks were

called for each genotype-control pair using MACS2 (false dis-

covery rate [FDR] cutoff of 1%) and only peaks shared between

input and IgG conditions were considered. We found that CHD8

binding sites are enriched in promoters (38% of all CHD8 peaks)

(Figure 2A) with peaks centered on the transcriptional start site

(TSS) (Figure 2B). These observations were consistent in both

Chd8+/– mice and wild-type littermates. A Gene Ontology (GO)
338 Cell Reports 19, 335–350, April 11, 2017
enrichment analysis of CHD8 binding sites

in wild-type mice shows enrichment of

numerous and diverse terms (Figure 2C).

Most notably, terms with the lowest FDR

consistently show enrichment for histone

and chromatin modification as well as al-

terations inmRNA and protein processing.

Cortical Lamination, Major Cell
Types, and Late-Stage Cortical
Progenitor Number in the
Somatosensory Cortex Do Not
Vary between Chd8+/– and Wild-
Type Mice
CHD8 binding site enrichments suggest

alterations in cell-cycle and cortical devel-
opment. CHD8 binds to other ASD-associated genes that are

major orchestrators of cortical development, namely Ctnnb1

(beta-catenin), Ankrd11, Foxg1, and BAF complex members

Arid1a andBcl11b. The observedmacrocephaly (Figure 1I) along

with alterations in cell cycle and the dysregulation of master reg-

ulators of cortical development led us to test whether a reduction

in CHD8 disrupts lamination and specification of cortical neuron

subtypes. We investigated morphology and major cell types

within the cortex by examining immunostained brain sections

collected from 21-day-old male mice. Morphological analysis

using Nissl staining shows no overt phenotype present in the

somatosensory cortex of Chd8+/– mice compared to wild-type

littermates (Figures S3A and S3B). Upon immunostaining for

Cux1, a marker for layer II/III/IV projection neurons, and

Bcl11b, a marker for layer V/VI projection neurons, we observed



no significant differences between Chd8+/– mice and wild-type

littermates within the somatosensory cortex (Figure S3B). Simi-

larly, immunostaining for parvalbumin (PV)-positive interneurons

and Olig2-positive oligodendrocytes showed no overt differ-

ences within the somatosensory cortex of Chd8+/– mice

compared to wild-type littermates (Figure S3B).

We next tested whether a reduction in CHD8 resulted in de-

fects within the cortical progenitor population. In particular, we

examined both the number of cortical progenitors as well as

the cell-cycle length in embryonic day 15.5 (E15.5) embryos.

We performed intraperitoneal injections of 5-bromo-20-deoxyur-
idine (BrdU) and 5-ethynyl-20-deoxyuridine (EdU) in pregnant

dams 120 and 30 min prior to euthanasia (Figure S3C) (Mairet-

Coello et al., 2012; Watanabe et al., 2015). Examination of

brain sections showed no increase in the number of cortical

progenitor cells as measured by BrdU incorporation within the

somatosensory cortex of Chd8+/– mice compared to wild-type

littermates (wild-type [n = 6] 240 ± 10 BrdU+ cells SEM,

Chd8+/– [n = 6] 241 ± 9 BrdU+ cells SEM, two-tailed t test

p value = 0.990) (Figure S3D). Finally, we examined whether

CHD8 was altering the cell-cycle length, as would be predicted

from previous studies as well as enrichment for cell-cycle regu-

lation genes enriched in CHD8 peaks. However, examination

of brain sections showed no increase in either the total cell-cycle

length (wild-type [n = 6] 9.4 ± 0.5 hr SEM, Chd8+/– [n = 6] 10.3 ±

0.1 hr SEM, two-tailed t test p value = 0.107) (Figure S3E) or the

length of S phase (wild-type [n = 6] 2.8 ± 0.1 hr SEM, Chd8+/–

[n = 6] 3.0 ± 0.3 hr SEM, two-tailed t test p value = 0.430) (Fig-

ure S3F) within the somatosensory cortex of Chd8+/– mice

compared to wild-type littermates. Taken together, these data

suggest that reduction in CHD8 in mice results in no gross de-

fects in specification, migration, or lamination of different sub-

types in the neocortex.

Chd8+/– Mice Exhibit Broad Gene Expression Changes
throughout the Brain
Considering CHD8 is not only expressed in cortex but

throughout the brain in most cell types, we set out to charac-

terize the brain-wide transcriptional changes resulting in a

decrease of CHD8 in an unbiased way. We performed RNA

sequencing on microdissected tissue from 10-week-old males.

We investigated brain regions previously implicated in ASD,

namely the medial prefrontal cortex (mPFC), dorsal striatum

(DS), NAc, ventral tegmental area (VTA), hippocampal formation

(HPF), amygdala (AM), and lateral hypothalamus (LH).

We performed differential expression analysis within each re-

gion and found brain region-specific dysregulation in Chd8+/–

mice compared to wild-type littermates (Figure S4A). The top

ten up- and downregulated genes irrespective of brain region

are shown (Figure 3A). Dysregulated genes found within more

than one region are Eif2b5 (DS and AM), Nbl1 (NAc and LH),

and Mgp (HPF and AM). Select differentially expressed genes

within the NAc were validated by RT-qPCR (Figure S4B). Among

the differentially expressed genes, we find genes previously

associated with ASD, some of which are well-characterized

causal mutations while others are uncharacterized (Figure 3B).

In particular, we find transcription factors essential for the

development of the brain (i.e., FoxG1), global regulators of the
epigenome (i.e., Mecp2 and Tet2), as well as many neuronal

and synaptic adhesion molecules, such as Kank1, Cntnap5b,

Cntn6, Ankrd11, Pcdh15, Pcdha8, and Pcdha9. Many of these

genes are also directly bound by CHD8 (Figure 3B). To identify

entire pathways dysregulated in Chd8+/– mice, we performed

gene set enrichment analysis (GSEA) (Figure 3C). Consistent

with previous reports that CHD8 acts as a negative regulator of

Wnt signaling, we identified a NAc-specific positive enrichment

for Wnt signaling.

Chd8+/– Mice Exhibit Synaptic Dysfunction within MSNs
in the NAc
The observations that Wnt signaling and synaptic adhesion

molecules are dysregulated in the NAc prompted us to further

characterize the role of CHD8 in this region. To study whether

mutation of Chd8 results in altered synaptic transmission, we

assayed several electrophysiological parameters of MSNs in

the core region of the NAc by whole cell slice recording utilizing

aged-matched littermates between 6–8 weeks old.

First, we recorded spontaneous excitatory postsynaptic cur-

rent (sEPSC) and observed an increase in sEPSC frequency

(wild-type [n = 24] 5.0 ± 0.4 Hz SEM, Chd8+/– [n = 28] 6.3 ±

0.5 Hz SEM, two-tailed t test p value = 0.048) and amplitude

(wild-type [n = 24] 16.3 ± 0.5 pA SEM, Chd8+/– [n = 28] 19.2 ±

0.8 pA SEM, two-tailed t test p value = 0.006) in Chd8+/– mice

compared towild-type littermates (Figure 4A). These results sug-

gest that excitatory inputs onto MSNs of NAc are enhanced.

Then, we measured miniature excitatory postsynaptic current

(mEPSC) and observed neither an increase in frequency (wild-

type [n = 26] 4.5 ± 0.5 Hz SEM, Chd8+/– [n = 27] 4.3 ± 0.4 Hz

SEM, two-tailed t test p value = 0.760) nor amplitude (wild-type

[n = 26] 21.9 ± 0.8 pA SEM, Chd8+/– [n = 27] 21.5 ± 0.5 pA

SEM, two-tailed t test p value = 0.674) inChd8+/– mice compared

to wild-type littermates (Figure 4B).

To further study the synaptic properties of MSNs, we

measured inhibitory synaptic transmission onto MSNs of the

NAc. We observed no difference in the frequency of miniature

inhibitory postsynaptic current (mIPSC) in MSNs between

genotypes (wild-type [n = 29] 1.2 ± 0.1 Hz SEM, Chd8+/–

[n = 30] 1.1 ± 0.1 Hz SEM, two-tailed t test p value = 0.663).

However, we observed a decrease in the amplitude of mIPSC

(wild-type [n = 29] 40 ± 2 pA SEM, Chd8+/– [n = 30] 36 ±

1 pA SEM, two-tailed t test p value = 0.036) in Chd8+/– mice

compared to wild-type littermates (Figure 4C). To further inves-

tigate whether cortical inputs and presynaptic components

contribute to the increased excitatory inputs onto MSNs in

the NAc, we examined the paired pulse ratio (PPR) between

EPSCs using parasagittal slice preparation as demonstrated

previously (Rothwell et al., 2014). We observed no difference

in PPR with an interval of 50 ms (wild-type [n = 23] 1.4 ±

0.1 PPR SEM, Chd8+/– [n = 25] 1.3 ± 0.1 PPR SEM, two-tailed

t test p value = 0.755) or 300 ms (wild-type [n = 22] 0.97 ±

0.05 PPR SEM, Chd8+/– [n = 21] 0.95 ± 0.04 PPR SEM, two-

tailed t test p value = 0.711) in Chd8+/– mice compared to

wild-type littermates (Figure 4D). These results suggest that a

local decrease of inhibitory transmission may contribute to

the enhanced excitatory inputs onto MSNs in the NAc in

Chd8+/– mice.
Cell Reports 19, 335–350, April 11, 2017 339
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Figure 3. RNA-Seq of Adult Chd8+/– Brain Regions

Shows Globally Dysregulated Genes and Pathways

(A) Table of the top ten upregulated (top) and downregulated

(bottom) differentially expressed genes. Differential expression

analysis using DEseq2 was performed on a TPM expression

matrix from RNA sequencing libraries generated from different

brain regions when comparing 10-week-old male Chd8+/–

mice and wild-type littermates. See also Figure S4.

(B) Table of differentially expressed ASD-associated genes in

different brain regions when comparing 10-week-old male

Chd8+/– mice and wild-type littermates. Genes bound by

CHD8 are denoted with Y.

(C) Enriched gene sets in Chd8+/– mice. Gene set enrichment

analysis was performed on RNA sequencing libraries gener-

ated fromdifferent brain regions when comparing 10-week-old

maleChd8+/– mice andwild-type littermates. Table of enriched

gene sets with FDR below 8%.
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Figure 4. Chd8 Mutation Leads to Striatal

Dysfunction

(A) Top: representative sEPSC traces fromMSNs in

the core region of the NAc of Chd8+/– mice and

wild-type littermates. Chd8+/– mice displayed both

an increase in (left) sEPSC frequency (wild-type

[n = 24] 5.0 ± 0.4 Hz SEM, Chd8+/– [n = 28] 6.3 ±

0.5 Hz SEM, two-tailed t test p value = 0.048) as

well as (right) sEPSC amplitude (wild-type [n = 24]

16.3 ± 0.5 pA SEM, Chd8+/– [n = 28] 19.2 ± 0.8 pA

SEM, two-tailed t test p value = 0.006) compared to

wild-type littermates.

(B) Top: representative mEPSC traces from MSNs

in the core region of the NAc of Chd8+/– mice and

wild-type littermates. Chd8+/– mice had no differ-

ence in either (left) mEPSC frequency (wild-type

[n = 26] 4.5 ± 0.5 Hz SEM, Chd8+/– [n = 27] 4.3 ±

0.4 Hz SEM, two-tailed t test p value = 0.760) or

(right) mEPSC amplitude (wild-type [n = 26] 21.9 ±

0.8 pA SEM, Chd8+/– [n = 27] 21.5 ± 0.5 pA SEM,

two-tailed t test p value = 0.674) compared to wild-

type littermates.

(C) Top: representativemIPSC traces fromMSNs in

the core region of the NAc of Chd8+/– mice and

wild-type littermates. Chd8+/– mice had no in-

crease in (left) mIPSC frequency (wild-type [n = 29]

1.2 ± 0.1 Hz SEM, Chd8+/– [n = 30] 1.1 ± 0.1 Hz

SEM, two-tailed t test p value = 0.663) but did have

a decrease in (right) mIPSC amplitude (wild-type

[n = 29] 40 ± 2 pA SEM, Chd8+/– [n = 30] 36 ± 1 pA

SEM, two-tailed t test p value = 0.036) compared to

wild-type littermates.

(D) Top: representative paired-pulse ratio traces.

No difference was observed between PPR for in-

tervals of (left) 50 ms (wild-type [n = 23] 1.4 ±

0.1 PPR SEM, Chd8+/– [n = 25] 1.3 ± 0.1 PPR SEM,

two-tailed t test p value = 0.755) or (right) 300 ms

(wild-type [n = 22] 0.97 ± 0.05 PPR SEM, Chd8+/–

[n = 21] 0.95 ± 0.04 PPR SEM, two-tailed t test

p value = 0.711) in Chd8+/– mice compared to wild-

type littermates.
Chd8+/– Mice Display ASD-like Behavioral Phenotypes
To examine whether Chd8+/– mice manifest phenotypic out-

comes relevant to diagnostic symptoms found in patients with

ASD, such as anxiety, repetitive behavior, and impaired social

interactions, we performed a panel of well-characterized

behavioral assays with age-matched wild-type and Chd8+/–

littermates.

We first performed social behavioral tests of Chd8+/– mice at

an early developmental stage using the juvenile social play para-

digm. We utilized age- and gender-matched Chd8+/– and wild-
C

type littermate pairs at postnatal days

23–25 as previously described (Bolivar

et al., 2007; McFarlane et al., 2008; Yang

et al., 2009). We found no difference in

the total number of all interactive events

between genotypes (wild-type [n = 15]

107 ± 6 events SEM, Chd8+/– [n = 17]

114 ± 8 events SEM, one-way ANOVA

with Bonferroni post hoc test p value >
0.05) (Figure 5A). However, we observed an increase in the total

duration of all interactive events between in Chd8+/– mice

compared to wild-type littermates (wild-type [n = 15] 71 ± 4 s

SEM,Chd8+/– [n = 17] 90 ± 10 s SEM, one-way ANOVAwith Bon-

ferroni post hoc test p value = 0.011) (Figure 5B). By categorizing

different patterns of reciprocal play behaviors, we found no dif-

ference in the total number or duration of any specific behavior

between genotypes: nose-to-nose events (wild-type [n = 15]

28 ± 2 events SEM, Chd8+/– [n = 17] 27 ± 2 events SEM, one-

way ANOVA with Bonferroni post hoc test p value > 0.05)
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Figure 5. Chd8+/– Mice Display a Mild Defect in Social Behavior and Normal Repetitive Behaviors

(A) During juvenile social play we observed no difference in the total number of all interactive events between Chd8+/– and wild-type littermate mouse pairs (wild-

type [n = 15] 107 ± 6 events SEM, Chd8+/– [n = 17] 114 ± 8 events SEM, one-way ANOVA with Bonferroni post hoc test p value > 0.05). See also Figure S5.

(B) During juvenile social play we observed an increase in the total duration of all interactive events between Chd8+/– and wild-type littermate mouse pairs (wild-

type [n = 15] 71 ± 4 s SEM, Chd8+/– [n = 17] 90 ± 10 s SEM, one-way ANOVA with Bonferroni post hoc test p value = 0.011).

(C) Top: sociability test of the three-chambered social approach task showing both (left) wild-type and (right) Chd8+/– mice display significant preference for the

novel mouse compared to the novel object (wild-type [n = 20] 160 ± 10 [novel object chamber, O] 80 ± 6 [middle chamber, M] 330 ± 20 [novel mouse chamber, N]

84 ± 8 [novel object direct interaction, O] 180 ± 10 [novel mouse direct interaction, N] s SEM). One-way ANOVA with Bonferroni post hoc test: novel object versus

novel mouse chamber p value < 0.001, novel object versus novel mouse direct interaction p value < 0.001,Chd8+/– (n = 24) 140 ± 9 (novel object chamber, O), 80 ±

10 (middle chamber, M), 340 ± 20 (novel mouse chamber, N), 82 ± 6 (novel object direct interaction, O), and 220 ± 10 (novel mouse direct interaction, N) s SEM.

One-way ANOVA with Bonferroni post hoc test: novel object versus novel mouse chamber p value < 0.001, novel object versus novel mouse direct interaction

p value < 0.001. See also Figure S5.

(D) Top: social novelty test of the three-chambered social approach task showing (left) wild-type but not (right)Chd8+/– mice display significant preference for the

novel mouse compared to the familiar mouse (wild-type [n = 20] 220 ± 20, [familiar mouse chamber, F] 100 ± 10, [middle chamber, M] 240 ± 20, [novel mouse

chamber, N] 90 ± 10, [familiar mouse direct interaction, F] 130 ± 20, and [novel mouse direct interaction, N) s SEM). One-way ANOVA with Bonferroni post hoc

test: familiar versus novel mouse chamber p value > 0.05, familiar versus novel mouse direct interaction p value = 0.040,Chd8+/– (n = 24) 210 ± 20, (familiar mouse

chamber, F) 84 ± 8, (middle chamber, M) 230 ± 10, (novel mouse chamber, N) 110 ± 10, (familiar mouse direct interaction, F) 130 ± 20, and (novel mouse direct

interaction, N) s SEM. One-way ANOVA with Bonferroni post hoc test: familiar versus novel mouse chamber p value = 0.988, familiar versus novel mouse direct

interaction p value = 0.292.

(E) Quantification of self-grooming events during a 1-hr period showed no difference in grooming behavior between genotypes (wild-type [n = 17] 1040 ± 40 s

SEM, Chd8+/– [n = 17] 1000 ± 70 s SEM, two-tailed t test p value = 0.637).

(F) In the marble burying test,Chd8+/– and wild-type littermates showed no difference in the number of marbles buried (wild-type [n = 23] 12.6 ± 0.8marbles SEM,

Chd8+/– [n = 25] 10 ± 1 marbles SEM, two-tailed t test p value = 0.125).
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(Figure S5A), nose-to-anogenital sniffing events (wild-type

[n = 15] 32 ± 2 events SEM, Chd8+/– [n = 17] 33 ± 3 events

SEM, one-way ANOVA with Bonferroni post hoc test p value >

0.05) (Figure S5B), following behavior events (wild-type [n = 15]

10 ± 2 events SEM, Chd8+/– [n = 17] 15 ± 4 events SEM, one-

way ANOVA with Bonferroni post hoc test p value > 0.05) (Fig-

ure S5C), direct interaction events (wild-type [n = 15] 37 ± 2

events SEM, Chd8+/– [n = 17] 37 ± 3 events SEM, one-way

ANOVA with Bonferroni post hoc test p value > 0.05) (Fig-

ure S5D), nose-to-nose duration (wild-type [n = 15] 10.8 ± 0.9 s

SEM, Chd8+/– [n = 17] 16 ± 2 s SEM, one-way ANOVA with Bon-

ferroni post hoc test p value > 0.05) (Figure S5E), nose-to-ano-

genital sniffing duration (wild-type [n = 15] 18 ± 2 s SEM,

Chd8+/– [n = 17] 21 ± 3 s SEM, one-way ANOVA with Bonferroni

post hoc test p value > 0.05) (Figure S5F), following behavior

duration (wild-type [n = 15] 6.0 ± 0.8 s SEM, Chd8+/– [n = 17]

13 ± 4 s SEM, one-way ANOVA with Bonferroni post hoc test

p value > 0.05) (Figure S5G), direct interaction duration (wild-

type [n = 15] 36 ± 2 s SEM, Chd8+/– [n = 17] 41 ± 5 s SEM,

one-way ANOVA with Bonferroni post hoc test p value > 0.05)

(Figure S5H).

We then performed the three-chambered social approach

task with age-matched Chd8+/– mice and wild-type. As previ-

ously described, the three-chambered assay involves habitua-

tion, a sociability test, and a social novelty (Chadman et al.,

2008; Chao et al., 2010; McFarlane et al., 2008; Moy et al.,

2004; Silverman et al., 2010; Yang et al., 2009). No preference

for either side of the test apparatus was observed for mice in

either group during the habituation phase (Figures S5I and

S5J). In the sociability test of the three-chambered assay, we

counterbalanced the object and social sides for each experi-

mental mouse, and experimental mice were given free access

to interact with a novel mouse or a novel object. During this

phase, both Chd8+/– mice and wild-type littermates displayed

significant preference for the novelmouse compared to the novel

object (wild-type [n = 20] 160 ± 10 [novel object chamber] 80 ± 6

[middle chamber] 330 ± 20 [novel mouse chamber] 84 ± 8 [novel

object direct interaction] 180 ± 10 [novel mouse direct interac-

tion] s SEM). The statistical test used was a one-way ANOVA

with Bonferroni post hoc test: novel object versus novel mouse

chamber p value < 0.001, novel object versus novel mouse direct

interaction p value < 0.001;Chd8+/– (n = 24) 140 ± 9 (novel object

chamber) 80 ± 10 (middle chamber) 340 ± 20 (novel mouse

chamber) 82 ± 6 (novel object direct interaction) 220 ± 10 (novel

mouse direct interaction) s SEM. The statistical test used was a

one-way ANOVA with Bonferroni post hoc test: novel object

versus novel mouse chamber p value < 0.001, novel object

versus novel mouse direct interaction p value < 0.001] (Fig-

ure 5C). In the social novelty test phase, experimental mice

were given free access to interact with a novel mouse or a

familiar mouse. In this phase, wild-type littermates but not

Chd8+/– mice, displayed significant preference for the novel

mouse compared to the familiar mouse [wild-type (n = 20)

220 ± 20 (familiar mouse chamber) 100 ± 10 (middle chamber)

240 ± 20 (novel mouse chamber) 90 ± 10 (familiar mouse direct

interaction) 130 ± 20 (novel mouse direct interaction) s SEM].

The statistical test used was a one-way ANOVA with Bonferroni

post hoc test: familiar versus novel mouse chamber p value >
0.05, familiar versus novel mouse direct interaction p value =

0.040; Chd8+/– (n = 24) 210 ± 20 (familiar mouse chamber)

84 ± 8 (middle chamber) 230 ± 10 (novel mouse chamber)

110 ± 10 (familiar mouse direct interaction) 130 ± 20 (novel

mouse direct interaction) s SEM. The statistical test used was

a one-way ANOVA with Bonferroni post hoc test: familiar versus

novel mouse chamber p value = 0.988, familiar versus novel

mouse direct interaction p value = 0.292] (Figure 5D). We

observed no difference in locomotion, as measured by the total

number of entries into the side chambers, between wild-type

littermates and Chd8+/– mice during both the sociability test

(wild-type [n = 20] 41 ± 4 entries SEM, Chd8+/– [n = 24] 40 ± 4 en-

tries SEM, two-tailed t test p value = 0.889) (Figures S5K–S5M)

and the social novelty test (wild-type [n = 20] 52 ± 6 entries

SEM, Chd8+/– [n = 24] 42 ± 4 s SEM, two-tailed t test p value =

0.131) (Figures S5N–S5P). These results indicate that adult

Chd8+/– mice show a mild deficit in social interaction behavior

in the social novelty but not the sociability test of the three-

chambered social approach task.

To assess the repetitive behavior of Chd8+/– mice, we utilized

two common behavioral paradigms investigating grooming and

burying behavior. To assess self-grooming behavior, experi-

mental animals were placed inside the test chamber for a 1-hr

period, and we did not observe a difference in the total grooming

time between genotypes (wild-type [n = 17] 1,040 ± 40 s SEM,

Chd8+/– [n = 17] 1,000 ± 70 s SEM, two-tailed t test p value =

0.637) (Figure 5E). Moreover, no skin lesions were found on

any Chd8+/– mouse or wild-type littermate for the duration of

our study. In the marble burying assay, which takes place in a

novel testing cage with 24 marbles introduced, we did not

observe a difference in the number of marbles buried between

genotypes (wild-type [n = 23] 12.6 ± 0.8 marbles SEM, Chd8+/–

[n = 25] 10 ± 1 marbles SEM, two-tailed t test p value = 0.125)

(Figure 5F). Together, these results suggest that Chd8+/– mice

do not display repetitive grooming or burying behaviors.

To assess the memory performance of Chd8+/– mice, we con-

ducted a memory test by subjecting mice to either a contextual

or toned fear conditioning task. During the training phase,

Chd8+/– mice exhibited a similar percentage of freezing behavior

compared to wild-type littermates (repeated-measures two-way

ANOVAwith Bonferroni post hoc test, adjusted p value > 0.05 for

each time point) (Figure S6A). Percentages of freezing time per

30-s bin across the training were compared, and no difference

was detected between genotypes. After being conditioned to

aversive electrical shocks, mice were placed into the test appa-

ratus with identical context 24 hr later. During the contextual fear

conditioning, we observed no difference in freezing time be-

tween genotypes (wild-type [n = 16] 34% ± 3% SEM, Chd8+/–

(n = 21) 35% ± 3% SEM, two-tailed t test p value = 0.788)

(Figure S6B). Similarly, during the tone fear conditioning, we

observed no difference in freezing time between genotypes

(wild-type [n = 16] 31% ± 2% SEM, Chd8+/– (n = 21) 34% ±

2% SEM, two-tailed t test p value = 0.231) (Figure S6C). We

did observe a significant difference in freezing time between

the baseline and tone conditions for both genotypes (wild-type

[n = 16] baseline 6% ± 1%SEM, tone 30% ± 2%SEM, two-tailed

t test p value < 0.001, Chd8+/– [n = 21] baseline 4.9% ± 0.9%

SEM, tone 34% ± 2% SEM, two-tailed t test p value < 0.001)
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(Figure S6C). These data suggest that both contextual fear

conditioning and tone-based fear conditioning are intact in

Chd8+/– mice.

Many individuals with ASD experience various degrees of anx-

iety, including a population of ASD patients withCHD8mutations

(Bernier et al., 2014; Merner et al., 2016; White et al., 2009).

Increased anxiety-like behaviors were also frequently detected

in many mouse models of ASD (Kazdoba et al., 2014; McGill

et al., 2006; Zhou et al., 2016). To more generally assess the be-

haviors of theChd8+/– animals, we conducted the open field test.

We found that Chd8+/– mice spent less time in the center (wild-

type [n = 55] 360 ± 30 s SEM, Chd8+/– [n = 64] 190 ± 20 s

SEM, two-tailed t test p value < 0.001) (Figure 6A) of the arena

and also exhibit reduced total distance moved (wild-type

[n = 41] 6.5 ± 0.3 m SEM, Chd8+/– [n = 55] 5.2 ± 0.3 m SEM,

two-tailed t test p value = 0.062) (Figure 6B) compared to wild-

type littermates. Less time spent in the center of the arena is

often interpreted as an anxiety-like phenotype (Bailey and Craw-

ley, 2009). We further probed this phenotype utilizing the dark-

light emergence test. In the dark-light emergence test, which

takes place in a two-chamber arena with differential lighting in-

tensity, we observed an increase in the latency to enter the light

side of the arena from the dark side (wild-type [n = 19] 40 ± 10 s

SEM, Chd8+/– [n = 22] 150 ± 30 s SEM, two-tailed t test p value =

0.001) (Figure 6C) as well as the total time spent in the light side

of the arena (wild-type [n = 19] 100 ± 20 s SEM, Chd8+/– [n = 25]

50 ± 20 s SEM, two-tailed t test p value = 0.029) (Figure 6D) in

Chd8+/– mice compared towild-type littermates. Together, these

results suggest Chd8+/� mice display anxiety-like behaviors in

the open field and dark-light emergence tests.

Given the observation of reduced locomotion in the open field

test (Figure 6A), one may expect that Chd8+/– mice develop

impaired motor skills in addition to elevated anxiety-like behav-

iors. To gain a deeper understanding of phenotypes related to

decreased locomotion, we performed the rotarod test. We first

used a rotarod performance test paradigm where animals were

tested once a day for 5 days and found thatChd8+/– mice outper-

formed weight-matched wild-type littermates (repeated-mea-

sures two-way ANOVA with Bonferroni post hoc test, adjusted

p value > 0.05 [trial 1], 0.088 [trial 2], 0.008 [trial 3], > 0.05 [trial 4],

and 0.020 [trial 5]) (Figure 6E). Experimental conditions for

rotarod vary widely across laboratories, therefore, to confirm

our result, we reproduced the phenotype in a later generation

of mice using a second paradigm with different experimental

conditions, namely three trials per day for 2 days in weight-

matched animals (repeated-measures two-way ANOVA with

Bonferroni post hoc test, adjusted p value > 0.05 [trial 1], 0.042

[trial 2], 0.201 [trial 3], 0.604 [trial 4], > 0.05 [trial 5], and

0.025 [trial 6]) (Figure 6F). Together, these data suggest that

Chd8+/– mice show reduced locomotion in the open field test

and an increase in acquired motor learning in the rotarod perfor-

mance text.

Perturbation of Chd8 in Wild-Type Adult Mice
Recapitulates Behavioral Phenotypes
Increased acquired motor learning is a feature shared among

several other ASD mouse models, including PTEN knockout

(Kwon et al., 2006), NLGN3 R451C missense mutations (Chad-
344 Cell Reports 19, 335–350, April 11, 2017
man et al., 2008), and NLGN3 knockout (Rothwell et al., 2014)

among others (Etherton et al., 2009; Nakatani et al., 2009; Peña-

garikano et al., 2011). Interestingly, MSN- and NAc-specific

mutation of NLGN3 (R451C or LOF) results in an increase in

acquired motor learning in the rotarod performance test (Roth-

well et al., 2014).

To test whether CHD8 expression in the NAc of adults was

required for the acquired motor learning phenotype, we first vali-

dated that Chd8 was expressed in the NAc of adult animals

(Figure S7A). We then stereotactically injected adeno-associ-

ated virus (AAV) vectors containing Chd8-targeting sgRNA (Fig-

ures 7A–7B) into either the NAc or the dorsal striatum of Cas9

knockin mice (Platt et al., 2014) (Figure 7C). Control mice were

injected with an AAV carrying a non-targeting sgRNA (sgLacZ)

into the NAc. Six weeks after injection, we performed immuno-

histochemistry (Figure 7D), microdissected the injected region,

and genotyped individual fluorescence-activated cell sorting

(FACS) EGFP-KASH-tagged fluorescent nuclei by Illumina

sequencing. AAV-mediated delivery of Chd8-targeting sgRNA

mediated robust mutagenesis of the Chd8 allele. We observed

cells with zero (wild-type, 10%), one (monoallelic, 57%), or two

(biallelic, 33%) mutant alleles (Figure 7E). We then performed

the rotarod performance test on injected animals and found

that perturbation of Chd8 in the NAc (sgChd8-NAc) but not

the dorsal striatum (sgChd8-DS) improved acquired motor

learning in the rotarod performance test compared to control in-

jected animals (sgLacZ-NAc) (sgChd8-NAc versus sgLacZ-NAc:

repeated-measures two-way ANOVA with Bonferroni post

hoc test, adjusted p value = 0.840 [trial 1], > 0.05 [trial 2], 0.732

[trial 3], > 0.05 [trial 4], > 0.026 [trial 5], 0.031 and [trial 6];

sgChd8-DS versus sgLacZ-DS: repeated-measures two-way

ANOVA with Bonferroni post hoc test, adjusted p value > 0.05

[trial 1], > 0.05 [trial 2], > 0.05 [trial 3], > 0.05 [trial 4], > 0.05 [trial 5],

and > 0.05 [trial 6]; sgChd8-NAc versus sgChd8-DS: repeated-

measures two-way ANOVA with Bonferroni post hoc test,

adjusted p value > 0.05 [trial 1], > 0.05 [trial 2], 0.815 [trial 3],

0.036 [trial 4], 0.011 [trial 5], and 0.074 [trial 6]) (Figure 7F). By

contrast, in the open field test, we observed no differences be-

tween genotypes (Figures S7B and S7C). Taken together, these

results demonstrate that CHD8 expression in adults is not

required for the increased anxiety-like or decreased locomotor

behavior but is required for acquired motor learning in the ro-

tarod performance test.

DISCUSSION

Our findings demonstrate an important role forCHD8 in neurode-

velopment, physiology, and behavior. We showed that Chd8+/–

mice exhibit a reduction in CHD8 expression, macrocephaly

and craniofacial abnormalities, and altered behavior, including

anxiety-like behavior, a mild social behavior defect, and

increased acquired motor learning, but we did not observe a

change in repetitive behavior. Together, we find that Chd8+/–

mice display some but not all of the phenotypic outcomes rele-

vant to the diagnostic symptoms found in human patients.

ChIP-seq and RNA sequencing (RNA-seq) revealed a broad

role for CHD8 in genome regulation, including control of cell

cycle, histone and chromatin modifications, and mRNA and
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Figure 6. Chd8+/– Mice Display Anxiety-like Behavior and Increased Acquired Motor Learning

(A) Left: open field traces for animals withmedian center time values. Right: in the open field test,Chd8+/–mice spent less time in the center compared towild-type

littermates (wild-type [n = 55] 360 ± 30 s SEM, Chd8+/– [n = 64] 190 ± 20 s SEM, two-tailed t test p value < 0.001). See also Figure S6.

(B) In the open field test, Chd8+/– mice showed reduced locomotion compared to wild-type littermates (wild-type [n = 41] 6.5 ± 0.3 m SEM, Chd8+/– [n = 55] 5.2 ±

0.3 m SEM, two-tailed t test p value = 0.062).

(C) In the dark-light emergence test, Chd8+/– mice spent more time in the dark side of the arena before crossing over to the light side of the arena compared to

wild-type littermates (wild-type [n = 19] 40 ± 10 s SEM, Chd8+/– [n = 22] 150 ± 30 s SEM, two-tailed t test p value = 0.001).

(D) In the dark-light emergence test, Chd8+/– mice spent less time in the light side of the arena compared to wild-type littermates (wild-type [n = 19] 100 ± 20 s

SEM, Chd8+/– [n = 25] 50 ± 20 s SEM, two-tailed t test p value = 0.029).

(E) In the rotarod performance test,Chd8+/– mice (n = 10) spent more time on the rotating rod before falling off compared to wild-type littermates (n = 10). One trial

was performed per day for 5 days (repeated-measures two-way ANOVA with Bonferroni post hoc test, adjusted p value > 0.05 [trial 1], 0.088 [trial 2], 0.008

[trial 3], > 0.05 [trial 4], and 0.020 [trial 5]).

(F) In the rotarod performance test,Chd8+/– mice (n = 8) spent more time on the rotating rod before falling off compared to wild-type littermates (n = 9). Three trials

were performed per day for 2 days (repeated-measures two-way ANOVA with Bonferroni post hoc test, adjusted p value > 0.05 [trial 1], 0.042 [trial 2], 0.201

[trial 3], 0.604 [trial 4], > 0.05 [trial 5], and 0.025 [trial 6]).
protein processing. These observations were brain region-spe-

cific, suggesting differential effects across cells and circuits in

the developing and adult brain. We find alterations in expected
pathways based on previous studies (i.e., Wnt and p53 signaling)

as well as novel effectors connecting chromatin modification

(i.e., Hdac4 and Chd7) and histone methylation (i.e., Mecp2
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Figure 7. In Vivo Perturbation of Chd8 in Adult Mice

Recapitulates Increased Acquired Motor Learning

Phenotype

(A) Diagram of AAV vector for sgRNA expression, Cas9 in-

duction, and nuclei labeling in neurons of the Cre-depen-

dent Cas9 mice.

(B) Workflow for generating and characterizing somatically

edited Cre-dependent Cas9 mice.

(C) Left: schematic representation of a brain slice with the

nucleus accumbens (NAc) and dorsal striatum (DS) target

regions indicated. Right: representative immunofluores-

cence images 4weeks post-injection showing AAV infected,

EGFP-expressing neurons within the NAc and DS. Enclosed

regions outline the targeted region. See also Figure S7.

(D) Representative immunofluorescence images of AAV in-

jected nucleus accumbens. Scale bar, 50 mm.

(E) Indel analysis on Illumina sequencing reads from FACS

sorted neuronal nuclei showing single cells with zero (wild-

type, 10%), one (monoallelic, 57%), or two (biallelic, 33%)

mutant alleles.

(F) In the rotarod performance test, sgChd8-NAc AAV

injected mice (n = 15) spent more time on the rotating

rod before falling off compared to sgChd8-DS (n = 11)

and sgLacZ-NAc (n = 15) AAV-injected control animals

(sgChd8-NAc versus sgLacZ-NAc: repeated-measures

two-way ANOVA with Bonferroni post hoc test, adjusted

p value = 0.840 [trial 1], > 0.05 [trial 2], 0.732 [trial 3], > 0.05

[trial 4], > 0.026 [trial 5], and 0.031 [trial 6]; sgChd8-DS

versus sgLacZ-DS: repeated-measures two-way ANOVA

with Bonferroni post hoc test, adjusted p value > 0.05

[trial 1], > 0.05 [trial 2], > 0.05 [trial 3], > 0.05 [trial 4], > 0.05

[trial 5], and > 0.05 [trial 6]; sgChd8-NAc versus sgChd8-DS:

repeated-measures two-way ANOVA with Bonferroni post

hoc test, adjusted p value > 0.05 [trial 1], > 0.05 [trial 2],

0.815 [trial 3], 0.036 [trial 4], 0.011 [trial 5], and 0.074 [trial 6]).

See also Figure S7.
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and Tet2) to development (i.e., Ctnnb1 [beta-catenin], FoxG1,

Arid1b, and Bcl11a) and the synapse (i.e., Ankr11 and Shank1-3,

and Pcdha8-9). These data provide support that CHD8 influ-

ences the expression of many genes and pathways some of

which likely result in the observed neuropathology.

CHD8 LOF mutations are strongly associated with ASD, and

evidence suggesting that CHD8 plays a causal role in neurode-

velopment and ASD neuropathology is mounting (Bernier et al.,

2014; Iossifov et al., 2014; O’Roak et al., 2012a, 2012b). Early in-

sights into the function of CHD8 revealed a modulatory role in

Wnt signaling, which may lead to altered neurogenesis and

cortical development. We confirmed that CHD8 is a negative

regulator of Wnt signaling. In keeping with this, we observed

morphological phenotypes, namely macrocephaly and craniofa-

cial abnormalities, but not an overt phenotype in the major

cortical cell types, lamination of the cortex, or number and cell-

cycle length of mid-stage cortical progenitors. These findings

suggest that cell-type specification and radial lamination of the

cortex, which are mid- to late-stage cortical developmental pro-

cesses, are largely intact in Chd8+/– mice.

Chd8mutation results in striatal dysfunction and an increased

acquired motor learning behavioral phenotype mediated by syn-

aptic transmission within MSNs in the NAc. These findings com-

bined with previous reports implicating the striatum (Di Martino

et al., 2011; Hollander et al., 2005; Peça et al., 2011) and in

particular the NAc (Dölen et al., 2013; Grueter et al., 2013;

Gunaydin et al., 2014; Rothwell et al., 2014), strongly suggest

theNAc is an important node for social behavior and ASD pathol-

ogy. Circuit mapping studies will be valuable for further under-

standing the links between MSNs in the NAc, striatal circuits,

and ASD risk alleles in the context of ASD pathology.

Increased acquiredmotor learning has been reported for other

mouse models of ASD (Michalon et al., 2012; Osterweil et al.,

2013; Rothwell et al., 2014; Tian et al., 2015). For example, Roth-

well et al. (2014) directly mapped the role of NLGN3 and NLGN3

[R451C] in MSNs of the NAc to acquired motor learning. While

we observed increased acquired motor learning by rotarod in

Chd8+/– mice, it did not definitively implicate CHD8 expression

in the NAc of adult mice. Therefore, we utilized CRISPR-Cas9

knockin mice to perturbChd8 directly in vivo tomap the relation-

ship. In NAc-specific Chd8 perturbed mice, we were able to

recapitulate the acquired motor learning phenotype observed

in germline mutant animals. Together, these data demonstrate

a functional role of CHD8 in the adult brain in the NAc, which

we directly link to behavioral phenotypes.

Recently, two independent groups reported the characteriza-

tion of Chd8 loss-of-function mutations in mice (Durak et al.,

2016; Katayama et al., 2016). These additional studies confirm

that Chd8+/– mice show abnormal social and anxiety-like

behavior as well as a macrocephaly phenotype, but no unifying

mechanism for CHD8 function has emerged from those works.

Together with these previous reports, our findings support the

hypothesis that CHD8 acts by globally regulating many genes,

highlighting several specific pathways that may be linked to

animal behaviors relevant to ASD pathology. These studies pro-

vide a first look at the molecular and physiological conse-

quences of LOF mutations in CHD8 on the developing and adult

brain, elucidating critical defects as well as providing mecha-
nistic insights. Our demonstration thatChd8+/– mice display hall-

mark features similar to those found in some ASD patients and

characterization of the circuits underlying these behaviors

open up broad avenues for future work. These results causally

implicate CHD8 in ASD pathogenesis and provide a link between

chromatin modification affecting the synapse and broader cir-

cuits connecting through the nucleus accumbens.

EXPERIMENTAL PROCEDURES

Germline Editing of Chd8 with Cas9

sgRNAs were designed using the CRISPRtool (http://crispr.mit.edu/) and

tested by SURVEYOR assay (Transgenomic) according to the manufacturer’s

protocol. The sequences of which are listed in Table S1 along with genomic

primers. Human codon optimized Cas9 (from Streptococcus pyogenes) cap-

ped and polyadenylated mRNA and sgRNA RNA were co-injected by pronu-

clear injection at concentration of 200 ng/mL Cas9 mRNA and 50 ng/mL and

200 ng/mL, respectively.

Immunofluorescence on Adult Brain

Adult male mice were transcardially perfused and brains were sectioned at

40 mm on a vibrating microtome and stained as previously described (Platt

et al., 2014). Primary antibodies and dilutions used were as follows: anti-

CHD8 (1:1,000, Cell Signaling Technology, P58438), anti-NeuN (1:800, Cell

Signaling Technology, 12943), anti-GFP (1:1,600, Nacalai Tesque, GF090R),

anti-parvalbumin (1:1,000, Sigma Aldrich, P3088), anti-GFAP (1:1,000, Aves

Labs, GFAP), anti-S100b (1:1,000, Abcam, ab4066), and anti-CNP1 (1:1,000,

Synaptic Systems, 255004). Secondary antibodies and dilutions used were

as follows: AlexaFluor 405, 488, 568, and/or 647 secondary antibody (1:400,

Life Technologies).

Immunofluorescence on Embryonic and Juvenile Brain

E15.5 embryos were dissected and fixed in 4% paraformaldehyde (PFA) over-

night. P21 pups were transcardially perfused with PBS, then with 4% PFA,

dissected, and postfixed in 4% PFA overnight. Brains were sectioned at

40 mm on a vibrating microtome (Leica VT1000S) and stained as previously

described (Lodato et al., 2014). Primary antibodies and dilutions used were

as follows: rat anti-CTIP2 antibody (1:100, Abcam ab18465), mouse anti-

SATB2 (1:50, Abcam ab51502), mouse anti-Pvalb (1:1,000, Millipore MAB),

rabbit anti Olig2 (IBL-18953), mouse anti BrdU (Millipore MAB), rabbit anti

Ki67(Abcam ab15580), and rabbit anti-CUX1 (1:100, Santa Cruz CDP

M-222). Secondary antibodies and dilutions used were as follows: AlexaFluor

405, 488, 568, and/or 647 secondary antibody (1:750, Life Technologies).

Quantification of BrdU Incorporation and Cell-Cycle Length

To estimate the cell-cycle length, we conducted a dual-pulse-labeling of DNA

synthesis using 5-bromo-20-deoxyuridine (BrdU; Sigma-Aldrich) and 5-ethy-

nyl-20-deoxyuridine (EdU; Molecular Probes) as previously described (Mairet-

Coello et al., 2012; Watanabe et al., 2015). Timed pregnant C57BL/6 females,

crossed with Chd8+/– males, received one intraperitoneal injection of BrdU

(50mg/kg) and EdU (12.5mg/kg) 120 and 30min before sacrifice, respectively,

and the ratios of cells that incorporated either or both BrdU and EdU were

analyzed to estimate the cell-cycle length. The detection of EdU-labeled cells

was performed based on a fluorogenic click reaction (Salic and Mitchison,

2008). For detection of BrdU, antigen retrieval was done by incubating sections

in 2 N HCL for 20 min. For counting and colocalization analyses of BrdU, EdU,

and Ki67, confocal images of a 300 mmsquare ROI spanning the entire ventric-

ular zone was imaged using Zeiss LSM 700 and analyzed by an independent

investigatorwhowasblinded togenotype andexperimental conditions. At least

1,000 cells were counted per section, three to four mid-cortex sections per ge-

notype were counted. For cell-cycle estimation was performed as previously

described (Mairet-Coello et al., 2012; Watanabe et al., 2015). Briefly, all Ki67

cells present in the region of interest (ROI) were counted and the existence of

co-staining with BrdU and/or EdU was noted. For BrdU incorporation, all

BrdU-positive cells present in the ROI were counted.
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ChIP-Seq

ChIP was performed as previously described (Hathaway et al., 2012). Somato-

sensory cortices were dissected from 10- to 11-week-old adult males and ho-

mogenized. Tissues were fixed in 1% formaldehyde for 10 min at 25�C and

then quenched in 0.125 M glycine on ice. Cross-linked cells were sonicated

to produce chromatin fragments of 200–700 bp in length. Chromatin fragments

were then incubated overnight at 4�Cwith anti-CHD8 antibody (Novus Biolog-

icals, NB100-60417). DNA was extracted with phenol chloroform, followed by

ethanol precipitation. ChIP-seq libraries were prepared according to the

NEBNext protocol and sequenced using Illumina NextSeq. The reads were

uniquely mapped to the mm10 genome utilizing Bowtie2 version 2.2.1(Lang-

mead and Salzberg, 2012) and duplicated reads were removed with Samtools

version 1.3 (Li et al., 2009) peaks were called using MACS2 version 2.1.1

(Zhang et al., 2008) with FDR cutoff of 5%. Binding site annotation and dis-

tance to TSS was performed using HOMER version 4.8 (Heinz et al., 2010).

Functional enrichment and ontology was performed using GREAT version

3.0.0 (McLean et al., 2010).

RNA Sequencing

Relevant brain regions were microdissected from 10- to 12-week-old male

mice and rapidly frozen on dry ice. RNA was purified by RNAeasy Plus Micro

Kit (QIAGEN) according to the manufacturer’s protocol. mRNA sequencing li-

braries were prepared using SMART-Seq2 (Picelli et al., 2013) and sequenced

on the NextSeq system (Illumina). Transcripts weremapped and quantified us-

ing RSEM (Li and Dewey, 2011). Using a log2 transcripts per million expression

matrix, differential expression analysis was performed using DEseq2 (Love

et al., 2014) and nominal p values are reported. Gene set enrichment analysis

was performed using GenePattern (open source from the Broad Institute).

Sample distances and hierarchical clustering were performed using GENE-E

(open source from the Broad Institute) using average linkages and Pearson’s

correlation. Heatmaps were also created using GENE-E using mean sub-

tracted and SD row normalized values.

Western Blot

Protein lysates were prepared, quantified, and equally loaded on 4%–20%

Tris-HCL Criterion Gel (Bio-Rad). Proteins were transferred onto PVDF mem-

brane (Bio-Rad), blocked, and stained overnight using the following primary

antibodies: anti-CHD8 (1:1,000, Bethyl, A301-2214A), HRP conjugated anti-

GAPDH (1:5,000, Cell Signaling Technology, 3683), and HRP-conjugated

anti-ACTB (1:1,000, Cell Signaling Technologies, 5125). Membranes were

washed and stained with secondary antibodies: HRP-conjugated secondary

antibodies (1:10,000, Cell Signaling Technology, 7074 and 7076). Membranes

were washed, developed using SuperSignal West Femto Substrate (Pierce),

and imaged on a gel imager (Bio-Rad).

Mouse Behavior

For all behavioral experiments, unless otherwise noted, we used 10- to 14-

week-old group housed males weaned in groups with littermates of similar

genotype. In all behavior experiments animals were randomized and experi-

menters were blinded to animal genotype during behavioral tests and data

analysis. See the Supplemental Information for detailed description of each

behavioral test.

Patch Clamp Slice Electrophysiology

Slice preparation, data acquisition, and analysis were performed with experi-

menter blinded to mice genotype as described in previous reports (Peça et al.,

2011; Rothwell et al., 2014; Zhou et al., 2016). See the Supplemental Informa-

tion for detailed description of each measurement.

RNA-FISH

C57BL/6J male mice (Jackson Laboratories) adult (>6 weeks old) and day 17

(E17) embryonic brains were dissected and placed directly into either 10%

neutral buffered formalin (NBF) or 4% paraformaldehyde (PFA) + 0.5% acetic

acid and fixed for 1, 3, or 12 hr. After fixation, brains were embedded in paraffin

and sliced at 5-mm thickness and mounted on glass slides without coverslips.

These slides were processed using QuantiGene ViewRNA ISH Tissue (Affyme-

trix). FISH probes targeting the 5th to the 12th exon of Chd8 transcripts were
348 Cell Reports 19, 335–350, April 11, 2017
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ViewRNA ISH protocol. Slides were imaged on a Zeiss Axio microscope under

203 or 403 objectives and fluorescent images were taken using a Cy3/TRITC

filter for Fast Red and a DAPI filter for DAPI.

AAV1/2 Production

AAV1/2 was produced as previously described (McClure et al., 2011; Platt

et al., 2014). Briefly, low passage HEK293FT cells (Life Technologies) were

transfected with the plasmid of interest, pAAV1 plasmid, pAAV2 plasmid,

helper plasmid pDF6, and PEI Max (Polysciences, 24765- 2). AAV particles

were purified using HiTrap heparin columns (GE Biosciences 17-0406-01).

Stereotactic Injection

Stereotactic injection was performed as previously described (Platt et al.,

2014). Briefly, anesthetized male mice at least 6 weeks of age were injected

with 1.25 mL of AAV virus bilaterally in the nucleus accumbens (AP +1.50,

ML ±1.10, DV –4.40) or the dorsal striatum (AP +0.70, ML ±2.50, DV –2.40)

at 100 nL/min. After injection, the needle was left in place for 5 min before

slowly being retracted.

Single Nuclei Preparation by FACS

Single nuclei experiments were performed as previously described (Platt et al.,

2014). Briefly, 6 weeks post-injection, the infected (EGFP+) regions were

dissected, flash frozen on dry ice, and stored at –80�C until use. The tissue

was gently homogenized in nuclei were isolated followed by gradient centrifu-

gation. Nuclei labeled with Vybrant DyeCycle Ruby Stain (Life Technologies)

and sorted using a BD FACSAria III. EGFP+ nuclei were sorted into individual

wells of a 96-well plate and used as an input for single-cell indel analysis.

Animal Work Statement

All animal work was performed under the guidelines of Division of Comparative

Medicine (DCM), with protocols (0414-024-17, 0414-027-17, and 0513-044-

16) approved by Massachusetts Institute of Technology Committee for Animal

Care (CAC) and were consistent with the Guide for Care and Use of Laboratory

Animals, National Research Council, 1996 (institutional animal welfare assur-

ance no. A-3125-01). Information regarding the gender and age/develop-

mental stage is listed under specific experimental procedure descriptions.
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