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ScienceDirect
Monogenic animal models for psychiatric diseases have

enabled researchers to dissect the relationship between

certain candidate genes, neural circuit abnormalities, and

behavioral phenotypes along development. Early reports of

phenotypic reversal after genetic restoration in mouse models

sparked hope that genetic defects do not damage circuits

irreversibly in early-onset disorders. However, further studies

have suggested that only some circuits exhibit this plasticity,

while many others require proper gene function during

development. This review focuses on what we have learned

from a few evolutionarily conserved circuit–phenotype

relationships and their developmental windows to illustrate

their importance when considering intervention strategies.
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Introduction
Recent surveys from 2010 determined that mental illness

affects about 20% of all adolescents in the United States

[1]. Treatments for these often debilitating conditions are

limited to only a few available drugs that target the

symptoms with moderate to low success, and attempts

to develop more effective treatments have been largely

disappointing. Many reasons have been proposed for the

absence of breakthroughs, but most recognized is the lack

of mechanistic knowledge of these disorders [2��,3�,4,5].
Currently, examining neurophysiology in human genet-

ics-based monogenic animal models represents the clear-

est route to attaining mechanistic insight in a subset of

disorders.
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Research with these models not only revealed potentially

targetable abnormalities in synaptic pathways and cir-

cuits, but also trajectories of abnormal brain development

that identify opportune windows for intervention [6–

9,10�,11��]. At the same time, tremendous progress in

technology development has provided tools that allow the

manipulation of genes and circuits [12,13,14�]. These

tools, combined with the ongoing discovery of critical

developmental periods for gene and circuit function,

suggest exciting prospects of eventually applying gene-

editing and circuit-manipulating technology to patients

[15,16�]. Moving forward, increasingly sophisticated ani-

mal models will continue to be an integral part in linking

circuit abnormalities to disorders and a platform to

explore treatments using new technologies. This review

highlights recent studies that revealed relevant circuit

defects, discusses developmental windows of opportunity

for intervention, and considers several future treatment

strategies.

Emerging focus on circuits in monogenic
models
To break down the complexity of neuropsychiatric dis-

orders into more easily targetable units, researchers

deconstruct the pathophysiology into circuit–phenotype

relationships. Although discussing circuit defects in depth

is beyond the scope of this review, three such relation-

ships observed across different animal models exemplify

the utility of this approach.

First, mice lacking the autism spectrum disorder (ASD)-

linked synaptic scaffolding protein SHANK3 display a

range of phenotypes including repetitive behavior

[11��,17,18]. Repetitive behavior is also observed in mice

lacking the cell-adhesion molecule Neuroligin-1 or the

scaffolding protein SAPAP-3. Strikingly, electrophysio-

logical examination of all three lines of mice revealed

abnormal corticostriatal neurotransmission. Together

with evidence from human patients and circuit-modulat-

ing studies in wildtype mice that causally link corticos-

triatal circuit dysfunction to repetitive behavior, these

observations in the disease models suggest that abnormal

function of this circuit is the neural substrate of mani-

festations of repetitive behavior regardless of the primary

molecular insult [11��,19–21,22�,23,24].

Second, a recent study found that four genetically distinct

mouse models for ASD display hypersensitivity to gentle

touch and tactile stimuli. Elegant genetic dissection of

the underlying circuits in two of the four models further
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demonstrated that this defect most likely results from

decreased inhibition of a somatosensory touch circuit in

the spinal cord [25��]. Even more intriguingly, the exclu-

sive dysfunction of this circuit and possibly ensuing

inappropriate tactile sensations during development

appear to contribute to abnormal social and anxiety

behaviors observed in these mice.

Third, mice lacking the ASD-associated gene Ptchd1
exhibit abnormal sleep and attention deficits [26��].
Ptchd1 is highly enriched in the thalamic reticular nucleus

(TRN), which regulates sleep spindles through thalamic

burst modulation [27]. Electrophysiological examination

of the TRN in Ptchd1-deficient mice revealed impaired

bursting and decreased sleep spindles. Abnormal sleep

spindles are also produced in mice lacking CaV3.3, which

is a low-threshold calcium channel that is highly

expressed in the TRN and genetically linked to several

psychiatric disorders [28,29]. Together with the finding

that the TRN is critical for selection of sensory stimuli in

divided attention in wildtype mice, the evidence from the

disease models indicates that TRN network dysfunction

may underlie sleep abnormalities and attention deficits

[30�].

Across disorders, these studies suggest a provisional

framework of targetable circuits based on which aberrant

corticostriatal activity drives repetitive behaviors. Also

based on this concept, dysfunctional somatosensory neu-

ron circuits in the spinal cord may underlie touch hyper-

sensitivity in some cases, and possibly impaired social and

anxiety behavior, whereas impaired TRN function may

be a substrate of abnormal sleep and attention deficits.

Studying circuits beyond monogenic models
The aforementioned circuit studies in monogenic mouse

models of neuropsychiatric disorders have greatly

advanced mechanistic understanding. However, this

strategy also faces several key challenges.

First, monogenic mouse models do not account for het-

erogeneous genetic backgrounds that modulate the effect

of the modeled genetic variant. In fact, a recent study

found that deletions of some genes only produce a phe-

notype in certain inbred mouse strains but not others, that

is, the genotype–phenotype relationship depends on the

particular genetic makeup outside the gene of interest

[31��]. Second, only a fraction of disease is attributable to

rare genomic variants that have large effects, while in the

majority of cases risk is conveyed by many variants of

small effect size that cumulatively confer susceptibility to

disease. A large fraction of these variants map to non-

coding regulatory regions, many of which are poorly

conserved between species [32,36,37]. Third, many of

the regions of interest, such as the prefrontal cortex

display significant differences in gene expression and
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circuit architecture between rodents and primates

(reviewed in Refs. [3�,38�]).

To overcome these challenges, investigators are attempt-

ing different strategies. One approach circumventing the

need to dissect complex genetic underpinnings uses

patient-derived induced pluripotent stem cells (iPS cells).

This strategy has already revealed some preliminary

signatures of abnormal neuronal connectivity, gene

expression, and neurotransmitter secretion in schizophre-

nia [39–41]; and recent advances in brain organoid tech-

nology promise improved interrogation of simple circuit

phenotypes using iPS cells (reviewed in Refs. [42]).

However, to explore more complex circuits involving

multiple brain regions and to identify circuit–behavior

relationships, investigators may explore a second complex

strategy with non-human primates in the future. Non-

human primates are likely better models for the interro-

gation of defects in evolutionarily more divergent circuits

[3�,38�]. In addition, these studies may leverage just

emerging genome-editing technologies to introduce mul-

tiple non-conserved human loci to non-human primates.

Studying high and low penetrance genetic variants and

risk alleles in these humanized primate models could

help understand how complex human genetic back-

ground differences shape different circuit–phenotype

relationships.

Windows for interference with disease circuits
Researchers adopt animal models as powerful tools to

establish circuit–phenotype relationships that are primar-

ily caused by the lack of particular genes. Once such

relationships have been identified, a critical question is

whether there are time windows during which circuit

defects and behaviors are malleable. The persistent

defect in pathways regulated by these genes suggests

that intervention at later points may ameliorate some

aberrant behavior and physiology. Conversely, the early

onset of neuropsychiatric diseases suggests that the genes

are critical for certain aspects of circuit development

during sensitive periods, and thus would cause irrevers-

ible deficits if not compensated for or restored before that

developmental period. Longitudinal studies of animal

models and the availability of new technology offer

unique opportunities to parse these possibilities and

better map out critical periods for particular genes and

circuits.

Opportunities for late intervention

Supporting the possibility that normalization of a genetic

defect after the completion of developmental milestones

is effective, recent studies demonstrate profound revers-

ibility of the pathology in mouse models for Rett syn-

drome, MeCP2 duplication syndrome, and SHANK3-

linked ASD. In the vast amount of cases Rett syndrome

is caused by mosaic expression of mutant and wildtype

alleles of the epigenetic regulator MeCP2 in females.
www.sciencedirect.com
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Among other defects, a comparable genetic lesion in mice

produces abnormal synaptic plasticity and behaviors such

as inertia, irregular breathing, abnormal gait, and hind-

limb clasping [46]. Asking whether this can be reversed in

adulthood, Guy et al. conducted a pioneering study by

engineering mice such that MeCP2 expression can be

activated by tamoxifen-Cre-ER-mediated removal of a

STOP-cassette in MeCP2. Four weeks after symptom

onset, tamoxifen was administered for several weeks and

endophenotypes assessed. Astonishingly, this late resto-

ration of MeCP2 expression significantly improved the

behavior and normalized synaptic plasticity, suggesting

that most cellular and circuit defects associated with

developmental lack of MeCP2 are reversible. Together

with the finding that loss of MeCP2 in late developmental

stages results in essentially the same gross defects as early

loss [47], these results support a model of persistent

requirement of normal MeCP2 function and suggest

therapeutic opportunities for Rett syndrome throughout

life. Interestingly, this possibility may generalize to the

clinically distinct MeCP2 duplication syndrome. Mice

carrying an extra copy of MeCP2 display hypoactivity,

abnormal social, motor, and anxiety-related behaviors, as

well as abnormal gene expression and synaptic plasticity.

Simply normalizing the amount of MeCP2 in adult ani-

mals through tamoxifen-Cre-ER-mediated removal of

one copy of MeCP2 rescued all deficits, which indicates

that brains developing under the influence of excessive

MeCP2 remain sufficiently intact to benefit from late

interventions [48��].

Based on the evidence discussed above, defects associ-

ated with abnormal MeCP2 expression levels appear

vastly reversible in adult mice, but an important question

is whether this opportunity might generalize to other

diseases with early developmental onset. Aiming to dis-

sect the reversibility of abnormalities in SHANK3 mutant

mice, Mei et al. devised a genetic model of SHANK3

deletion that allowed restoration of SHANK3 expression

by tamoxifen-Cre-ER. Examination of mice lacking

SHANK3 revealed reduced spine numbers, decreased

expression of receptor proteins at synapses, impaired

corticostriatal transmission, and behavioral abnormalities

including anxiety, motor coordination deficits, excessive

grooming, and reduced social behavior. Remarkably, ani-

mals with restored SHANK3 expression in adulthood

displayed normalized striatal receptor expression, den-

dritic spine numbers and corticostriatal neurotransmis-

sion, as well as normalized grooming and social interac-

tions [11��]. Together, these recent genetic studies

highlight the potential to reverse circuit defects in some

brain regions in adulthood.

Critical windows of opportunity

In the above example, genetic restoration of SHANK3

reverses dysfunction of the corticostriatal circuit and

several behavioral problems. Other behaviors, however,
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such as anxiety and deficits in motor coordination were

not rescued by adult re-expression of SHANK3, suggest-

ing that other circuits irreversibly damaged during devel-

opment are the substrate of these behavioral abnormali-

ties. Indeed, restoration of SHANK3 at a much earlier

time point at postnatal day 20 improved motor coordina-

tion and normalized anxiety. At this point, it is not fully

understood how the lack of SHANK3 during develop-

ment may contribute to irreversible phenotypes. One

explanation could be that, in the absence of SHANK3,

hyperactivity in the developing cortex derails develop-

mental trajectories by driving precocious maturation as

well as inappropriate, typically activity-dependent, circuit

refinement [49�]. Several other recent examples encom-

passing studies on MeCP2, Syngap1, Pten, and 22q11.2

deletion syndrome also suggest a similar framework.

Elegant manipulation of MeCP2 in somatosensory neu-

rons at different points in development demonstrated

that while both developmental and adult MeCP2 disrup-

tion cause abnormal tactile sensation, only the develop-

mental deletion results in anxiety and social deficits.

Consistently, only developmental, but not adult restora-

tion of the gene in somatosensory neurons appears to

protect the mice from developing signs of anxiety and

abnormal sociability [25��].

In another study, Rumbaugh and co-workers observed

that Syngap1+/� mice display abnormal synaptic physiol-

ogy mostly between the second and third postnatal week.

To dissect this further, the authors manipulated Syngap1
expression at different developmental time points and

revealed synaptic abnormalities for early developmental

(P1-P15), but not late adolescent deletion of the gene

[9,50]. Consistently, restoration of Syngap1 to normal

levels during adulthood failed to improve associated

behavioral and electrophysiological defects except for

an improvement in hippocampal plasticity [9]. Mechanis-

tically, it is yet unclear how the reduction of MeCP2 or

Syngap1 during early periods translates to long-lasting

changes. Perhaps, similar to the precocious maturation

of circuits and cortical hyper-excitability observed in

SHANK3B�/� mice [49�], accelerated excitatory synapse

maturation observed in Syngap1+/� or decreased inhibi-

tion of somatosensory neurons in MeCP2�/y mice may

disrupt excitatory-inhibitory balance and thus experi-

ence-dependent circuit refinement during development.

The significance of sensitive periods is enormous, as

transient treatment aimed to prevent abnormal brain

development during that time may have lasting effects.

This appears to be the case in exemplary studies on

Df (16)A+/� mice, a model for the schizophrenia-associ-

ated 22q11.2 deletion. Df (16)A+/� mice display impaired

hippocampal-prefrontal synchrony and encoding of spa-

tial information, decreased axonal branching in the pre-

frontal cortex and working memory deficits [51,52,53��].
Current Opinion in Neurobiology 2017, 45:59–65
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Intriguingly, Df (16)A+/� mice transiently treated with an

inhibitor for GSK3 during development (P7-P28) dis-

played normal structural and functional connectivity

and behavior in adulthood [53��]. Similar observations

were made in Pten+/� mice, where excessive axonal

branching of PFC to basolateral amygdala (BLA) connec-

tions and abnormal social behavior could be prevented by

transiently antagonizing an underlying molecular sub-

strate during development (P4-P14), but not later in life

[10�]. Together, these studies highlight the value of early

intervention before the development of abnormal circuits

in the brain.

Avenues for normalizing circuits
The recent studies outlined above highlight the poten-

tial to improve patient outcomes in neuropsychiatric

disorders. Currently, the three most actively explored

treatment strategies in animal models are small molecule

drugs, neural circuit modulators, and gene therapy (Fig-

ure 1). Testing of small molecule or peptide drugs in

several rodent models shows promising results

[18,26��,54–57], but successful translation has yet to

be achieved. Moving forward, the candidates holding

greatest promise will likely be those targeting stringently

conserved pathways in well-stratified patient cohorts

before critical periods close [10�,53��]. Once a sensitive

period is closed and circuits incorrectly wired, circuit-

modulating strategies, such as chemogenetics, optoge-

netics, or deep brain stimulation, may be used to
Figure?1
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overcome substantial circuit impairments. For example,

a drug that rescues social deficits in Pten+/� neonates

does not improve social function when administered to

adult mice, but modulation of the underlying circuit

using chemogenetics still does [10�]. Further supporting

this idea, optogenetic activation of VTA neurons in

adulthood can enhance social behavior in mice that

engaged less in this behavior, likely as a result of

inappropriate circuit development [57]. Deep brain

stimulation (DBS) is another technique that can improve

circuit function. This technique and other circuit mod-

ulators may be applied regardless of the underlying

molecular defect, which renders them useful across

disorders that share similar circuit defects [58,59��].

Contrasting these strengths, pharmacological and circuit-

modulating treatments face challenges as their success

may require the correction of multiple aberrant molecular

pathways, cell-types, and circuits underlying a disorder.

In such cases, restoring function on the genetic level may

be a more attractive strategy, with several recently devel-

oped approaches holding great promise [11��,46,48��].
Approaches to normalize gene expression include anti-

sense oligonucleotides [48��], transcriptional activators or

repressors [14�,60�], direct expression of a gene or mini-

gene-variant with split vectors for larger constructs

[61,62], excision of pathogenic fragments [63], and in

the future replacement of pathogenic variants with wild-

type alleles through genome editing [64��].
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Conclusion and outlook
Although animals cannot reflect all aspects of brain dis-

orders, studies in monogenic models have revealed

important neural circuit abnormalities, developmental

trajectories, and windows of opportunity for intervention.

Not surprisingly, there is not a singular mechanism

underlying any given psychiatric disorder, but thanks

to genetic tools, scientists have begun to deconstruct

disorders into smaller, more modifiable disease units by

parsing circuit–phenotype relationships. Regardless of

the molecular defect, several lines of evidence suggest

that disrupted cortico-striatal-thalamo-cortical circuit

function underlies repetitive behavior, while aberrant

tactile somatosensory circuit function during develop-

ment contributes to abnormal social behavior in adult-

hood [11��,19,20,25��,65]. Presently, it is not completely

understood how genetic defects lead to these circuit

dysfunctions. Based on the evidence discussed here,

the most conceivable theory is that some circuits depend

on certain genes for their activity-dependent maturation

and refinement during development while others require

the genes to maintain proper synaptic function through-

out life [9,11��,46,47,48��,49�,53��,66,67]. Inherently tied

to this notion is the realization that interventions may be

differentially effective depending on the time of their

initiation [10�,11��,25��]. In mice, an opportune time to

initiate pharmacological or gene therapy-based interven-

tions appears to be during the first month of life. After this

period, although still effective in some aspects, these

interventions may fail to fully correct function of some

abnormally matured circuits. Such circuits, however,

could be further tuned with circuit-modulating technolo-

gies in a combinatorial strategy. Focusing on the trans-

latability of these windows and interventions, ideally in

organisms that closely parallel developmental trajectories

of humans, such as non-human primates [38�,68], will be

an exciting research focus that should greatly enhance the

prospects of improving the lives of affected individuals.
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